Brahmagupta's Formula

Problem: Develop a proof for Brahmagupta's Formula.

Solution: Brahmagupta's formula gives the area of a Cyclic Quadrilateral as

$$A = \sqrt{(S-p)(S-q)(S-r)(S-s)}$$

Where, *p*, *q*, *r*, and *s* are the length of the sides and *S* is the semiperimeter defined as, $S = \frac{p+q+r+s}{2}$.

Now, Area of the Cyclic Quadrilateral = Area of $\triangle ADB$ + Area of $\triangle BDC$

$$=\frac{1}{2}pq\,\sin A + \frac{1}{2}rs\,\sin C$$

But since *ABCD* is a cyclic quadrilateral, $\angle DAB = 180^{\circ} - \angle DCB$

So, $\sin A = \sin C$.

Therefore, Area of Cyclic Quadrilateral $=\frac{1}{2}pq \sin A + \frac{1}{2}rs \sin A = \frac{1}{2}\sin A (pq + rs)$ Squaring both sides yields, $(Area)^2 = \frac{1}{4}sin^2A(pq + rs)^2$

$$4(Area)^2 = (1 - cos^2 A)(pq + rs)^2$$

 $4(Area)^2 = (pq + rs)^2 - cos^2 A(pq + rs)^2$ (i)

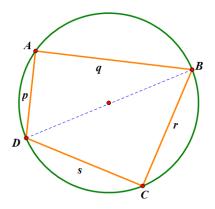
Now, let's apply law of cosine for $\triangle ADB$ and $\triangle BDC$.

For $\triangle ADB$, $BD^2 = p^2 + q^2 - 2pq \cos A$, and(ii)

For $\triangle BDC$, $BD^2 = r^2 + s^2 - 2rs \cos C$ (iii)

So, combining (ii) and (iii), we have, $p^2 + q^2 - 2pq \cos A = r^2 + s^2 - 2rs \cos C$

Since, $\angle A$ and $\angle C$ are supplementary, we have $\cos C = -\cos A$



So, $2\cos A (pq + rs) = p^2 + q^2 - r^2 - s^2$

$$\cos A (pq + rs) = \frac{1}{2}(p^2 + q^2 - r^2 - s^2)$$

Hence, $\cos^2 A (pq + rs)^2 = \frac{1}{4} (p^2 + q^2 - r^2 - s^2)^2$

Now, let's substitute this in equation (i)

$$4(Area)^{2} = (pq + rs)^{2} - \frac{1}{4}(p^{2} + q^{2} - r^{2} - s^{2})^{2}$$
$$16(Area)^{2} = 4(pq + rs)^{2} - (p^{2} + q^{2} - r^{2} - s^{2})^{2}$$

Using difference of two squares formula on the right side,

$$16(Area)^{2} = (2(pq + rs) + p^{2} + q^{2} - r^{2} - s^{2})(2(pq + rs) - p^{2} - q^{2} + r^{2} + s^{2})$$
$$= ((p + q)^{2} - (r - s)^{2})((r + s)^{2} - (p - q)^{2})$$
$$= (p + q + r - s)(p + q + s - r)(p + r + s - q)(q + r + s - p)$$

Now, since $S = \frac{p+q+r+s}{2}$,

We have, $16(Area)^2 = 16(S - p)(S - q)(S - r)(S - s)$

So, Area = $\sqrt{(S-p)(S-q)(S-r)(S-s)}$.

