EMAT6680.gif

 

 

 

Erin Mueller

 

 

Excel and APY

 

 

Excel can be used to explore many areas of mathematics including functions and graphs. Excel is a great tool for exploring annual percentage yields. When money is deposited into a savings account, this money will accrue interest over time. This means you will have more money than when you started (assuming you did not withdraw any) without ever depositing any. The first deposit made into your account is called the principal amount or the beginning amount. Your interest rate will vary depending on the length of time the account is open (will depend entirely upon yourself) and the type of account chosen. Accounts known as certificates of deposit (CD) will require you to keep your first deposit in the bank for a certain length of time. You are not allowed to touch this money while it is in the bank. However, interest rates on these types of accounts tend to be good and can range from 2% - 6% annual interest rate. Other factors include how long you tend to keep the account open and how many times per year, interest is accumulated. It may be yearly, semi-annually, or quarterly, depending on the bank. The Excel chart below shows how much money will be accrued after 10 years, in which the interest is compounded quarterly (4 time per year), and the interest rate is 1.99%. The chart shows how much money will be accrued based on the principal while the length of time, interest rate, and number of times interested is compounded are kept constant.

 

Principal

Interest Rate (Annual)

#Of Times Interest is Compounded per Year

# Of Years

Total Amount in Account After N Years

P

r

q

n

A

2000

0.199

4

10

3250.04

2500

0.199

4

10

4062.55

3000

0.199

4

10

4875.06

3500

0.199

4

10

5687.57

4000

0.199

4

10

6500.08

4500

0.199

4

10

7312.59

5000

0.199

4

10

8125.10

5500

0.199

4

10

8937.61

6000

0.199

4

10

9750.12

6500

0.199

4

10

10562.63

7000

0.199

4

10

11375.14

7500

0.199

4

10

12187.65

8000

0.199

4

10

13000.16

8500

0.199

4

10

13812.67

9000

0.199

4

10

14625.18

9500

0.199

4

10

15437.69

10000

0.199

4

10

16250.20

10500

0.199

4

10

17062.71

11000

0.199

4

10

17875.23

11500

0.199

4

10

18687.74

12000

0.199

4

10

19500.25

12500

0.199

4

10

20312.76

13000

0.199

4

10

21125.27

13500

0.199

4

10

21937.78

14000

0.199

4

10

22750.29

14500

0.199

4

10

23562.80

15000

0.199

4

10

24375.31

15500

0.199

4

10

25187.82

16000

0.199

4

10

26000.33

16500

0.199

4

10

26812.84

17000

0.199

4

10

27625.35

17500

0.199

4

10

28437.86

18000

0.199

4

10

29250.37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can also see this data in a chart. The Principal amount represents the input (x-axis) and the output is the Amount Earned (y-axis).

 

 

As we can see, this is a linear function. Note that in this case, the interest rate remains a steady 1.99%, the number of times compounded in a year remains 4 (quarterly), and the number of years the money is kept in the account remains 10. We can find the regression of our data as well as the r-square value using Excel.  Y=812.51x+2437.5 and r-square = 1. The r-square value represents the association between x and y. In this case, the data points accurately portray the linear regression function. Now let’s look at what happens when the interest rate is isolated. Below is the chart of data when the Principal is a constant $2,000, the interest is still compounded quarterly, and the money is still in the account for 10 years. The only variable changing is the interest rate.

 

 

Principal

Interest Rate (Annual)

# Of Times Interest is Compounded per Year

# Of Years

Total Amount in Account After N Years

P

r

q

n

A

2000

0.199

4

10

3250.04

2000

0.209

4

10

3328.28

2000

0.219

4

10

3408.20

2000

0.229

4

10

3489.85

2000

0.239

4

10

3573.26

2000

0.249

4

10

3658.45

2000

0.259

4

10

3745.47

2000

0.269

4

10

3834.35

2000

0.279

4

10

3925.12

2000

0.289

4

10

4017.82

2000

0.299

4

10

4112.49

2000

0.309

4

10

4209.16

2000

0.319

4

10

4307.87

2000

0.329

4

10

4408.65

2000

0.339

4

10

4511.56

2000

0.349

4

10

4616.62

2000

0.359

4

10

4723.88

2000

0.369

4

10

4833.38

2000

0.379

4

10

4945.15

2000

0.389

4

10

5059.25

2000

0.399

4

10

5175.71

2000

0.409

4

10

5294.57

2000

0.419

4

10

5415.89

2000

0.429

4

10

5539.71

2000

0.439

4

10

5666.06

2000

0.449

4

10

5795.01

2000

0.459

4

10

5926.59

2000

0.469

4

10

6060.85

2000

0.479

4

10

6197.84

2000

0.489

4

10

6337.62

2000

0.499

4

10

6480.22

2000

0.509

4

10

6625.71

2000

0.519

4

10

6774.13

 

 

Below is the graph of the data.

 

 

This function looks exponential. The regression equation and correlation coefficient for this graph is .

 

This means that if we plug a value for the interest rate in for “x”, the out put will be our amount earned based on a $2,000 principal and ten year, quarterly return.

 

Next, we can see what happens when we change the number of times interest is compounded throughout the year.

 

Principal

Interest Rate (Annual)

#Of Times Interest is Compounded per Year

# Of Years

Total Amount in Account After N Years

P

r

q

n

A

2000

0.199

4

10

3250.04

2000

0.199

5

10

2954.80

2000

0.199

6

10

2771.62

2000

0.199

7

10

2647.11

2000

0.199

8

10

2557.05

2000

0.199

9

10

2488.92

2000

0.199

10

10

2435.60

2000

0.199

11

10

2392.74

2000

0.199

12

10

2357.54

2000

0.199

13

10

2328.13

2000

0.199

14

10

2303.18

2000

0.199

15

10

2281.75

2000

0.199

16

10

2263.14

2000

0.199

17

10

2246.84

2000

0.199

18

10

2232.44

2000

0.199

19

10

2219.63

2000

0.199

20

10

2208.15

2000

0.199

21

10

2197.81

2000

0.199

22

10

2188.45

2000

0.199

23

10

2179.94

2000

0.199

24

10

2172.16

2000

0.199

25

10

2165.03

2000

0.199

26

10

2158.46

2000

0.199

27

10

2152.39

2000

0.199

28

10

2146.78

2000

0.199

29

10

2141.56

2000

0.199

30

10

2136.70

2000

0.199

31

10

2132.16

2000

0.199

32

10

2127.91

2000

0.199

33

10

2123.93

2000

0.199

34

10

2120.19

2000

0.199

35

10

2116.67

2000

0.199

36

10

2113.35

 

 

Below is the graph of the data.

 

 

The regression equation for this function is . Again, if we plug our compounded value in for “x”, the output will be the amount earned based on a $2,000 principal, 1.99% interest rate and a 10 year period.

 

We can also find a function for the amount of time our money is in the bank. Let’s look at the chart where the “year” variable changes.

 

Principal

Interest Rate (Annual)

#of Times Interest is Compounded per Year

# of Years

Total Amount in Account After N Years

P

r

q

n

A

2000

0.199

4

10

3250.04

2000

0.199

4

11

3328.28

2000

0.199

4

12

3408.20

2000

0.199

4

13

3489.85

2000

0.199

4

14

3573.26

2000

0.199

4

15

3658.45

2000

0.199

4

16

3745.47

2000

0.199

4

17

3834.35

2000

0.199

4

18

3925.12

2000

0.199

4

19

4017.82

2000

0.199

4

20

4112.49

2000

0.199

4

21

4209.16

2000

0.199

4

22

4307.87

2000

0.199

4

23

4408.65

2000

0.199

4

24

4511.56

2000

0.199

4

25

4616.62

2000

0.199

4

26

4723.88

2000

0.199

4

27

4833.38

2000

0.199

4

28

4945.15

2000

0.199

4

29

5059.25

2000

0.199

4

30

5175.71

2000

0.199

4

31

5294.57

2000

0.199

4

32

5415.89

2000

0.199

4

33

5539.71

2000

0.199

4

34

5666.06

2000

0.199

4

35

5795.01

2000

0.199

4

36

5926.59

2000

0.199

4

37

6060.85

2000

0.199

4

38

6197.84

2000

0.199

4

39

6337.62

2000

0.199

4

40

6480.22

2000

0.199

4

41

6625.71

2000

0.199

4

42

6774.13

 

Above, we can see the effect that “number of years” has on the amount earned.  Below is a graph of the data including the regression equation and correlation coefficient.

 

 

Again, this equation is the natural log function .

 

From the above equations for principal, interest, number of times compounded, and number of years in the account, we can estimate the amount earned based on any one of these variables.

 

 

 

Go Home