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When a mathematician discusses polyhedra, the discussion likely begins with convex polyhedra.  A convex polyhedron is a convex polygon-faced polyhedron such that the segment connecting any two vertices is always contained in the polyhedron interior.  However, this does not always have to be the case.  By expanding the conversation to include concave polyhedra, one encounters a fascinating new category of polyhedra, star polyhedra.  The star polyhedron is a class of polyhedra that have concave polygonal faces, such as the pentagram, for instance.  One of the ways star polyhedra are formed is by stellation.  “Stellation is the process of constructing polyhedra by extending facial planes past the polyhedron edges of a given polyhedron until they intersect” (Weisstein).  The stellation process creates the possibility of discovering many new and very interesting polyhedra.


Before diving into stellations of polyhedra, one must first understand the basics of the convex solids.  The most basic type of solid is the regular convex polyhedra.  In Book XIII of Euclid’s Elements, Euclid proves that “no more than the five types of (convex) regular solids (polyhedra) exist” (Kline 85).  A regular solid is a solid of which 1.) the polygonal faces are all congruent regular polygons, and 2.) the vertex configuration (the way each vertex is formed by the meeting of adjacent faces) is the same for every vertex.  The five regular polyhedra are called the platonic solids and consist of three polyhedra made up of four, eight, and twenty equilateral triangles, the tetrahedron, octahedron, and icosahedron, respectively, the cube, which is made up of six squares, and the dodecahedron formed by twelve pentagons.  Within the class of platonic solids, one can discuss the issue of duality.  “By the duality principle, for every polyhedron, there exists another polyhedron in which faces and polyhedron vertices occupy complementary locations” (Weisstein).  Each of the five platonic solids has a dual within the platonic solids.  The dodecahedron (twelve faces, twenty vertices) and the icosahedron (twenty faces, twelve vertices) are dual, and the cube (six faces, eight vertices) and the octahedron (eight faces, 6 vertices) are also dual.  The tetrahedron is self-dual since it has four faces and four vertices.  These are some of the key concepts that carry over between convex solids and stellations.   


While there are five platonic solids, there exist only four regular non-convex solids, known as the Kepler-Poinsot solids.  These four solids, the small dodecahedron, great dodecahedron, great stellated dodecahedron, and the great icosahedron, are, like the platonic solids, made up of congruent regular polygons that meet in the same configuration at each vertex.  The small dodecahedron and the great stellated dodecahedron use a regular concave polygon, namely the pentagram, to make up its faces.  The other two Kepler-Poinsot solids, the great dodecahedron and the great icosahedron have for their faces regular pentagons and equilateral triangles, respectively.  The biggest difference in the constraints of the platonic solids and the Kepler-Poinsot solids is the fact that when considering stellations and other non-convex solids, we must include the allowance of the faces of the polyhedron to intersect each other.  This is the only way that a number of pentagrams can come together to form a solid figure.  Also, if we disallow the criterion that faces be allowed to intersect each other, then with the platonic solids, we have exhausted the number of ways pentagons and equilateral triangles can be put together to form solids.  


Seemingly the most natural solids to begin stellating are the platonic solids.  We first begin by attempting to stellate the simplest of the platonic solids, the tetrahedron.  However, this polyhedron does not have any stellations.  This is due to the fact that if we extend the facial planes of the tetrahedron, they never intersect again since all faces are already adjacent.  The same can be said for the cube.  Its faces never intersect again because the opposite faces are parallel to one another while adjacent faces are perpendicular.  Thus another solid figure cannot be created from the cube.  The next simplest platonic solid is the octahedron.  The octahedron has only one stellation, the stella octangula.  This polyhedron is formed by extending the sides of the equilateral triangular faces until three faces come together at a vertex.  This process of stellation forms a polyhedron with regular triangular faces, whose orientation is flipped upside down from the original equilateral triangles of the octahedron.  Now we have a polyhedron where three equilateral triangles meet at a vertex.  Sound familiar?  That is because the stella octangula is the composition of two tetrahedra, which cross each other.  One can also think of the stella octangula as an octahedron with a tetrahedron resting on top of each of its eight faces.  Even though this stellation is made up of two (or nine) regular polyhedra and thus has congruent, regular faces and meets with three equilateral triangles at each of its eight vertices, the stella octangula is not considered a regular polyhedron but I am not convinced of why this is the case.  


While the stella octangula is not a regular polygon, regular non-convex solids have been seen dating back to the 1400s when Paolo Uccello laid the marble of St. Mark’s Basilica in Venice, Italy, upon which is found a small stellated dodecahedron.  Later, in the 1500s Wenzel Jamnitzer, in his book Perspectiva Corpum Regularium (Perspectives of Regular Solids) depicts the great stellated dodecahedron.  However, the first true discovery and study of stellated polyhedra was made in 1619 by Johannes Kepler.  It was Kepler that first stellated the dodecahedron, forming the small stellated dodecahedron and the great stellated dodecahedron.  At that time, he also recognized that these figures were in fact regular solids by the convex definition, other than the fact that the faces cross each other, making them concave.  It was nearly 200 years later before the other two regular non-convex solids were discovered by Louis Poinsot in 1809.  He achieved this discovery by focusing not only on the polygonal faces of the solids, but also on their vertices.  In this way, he found the great dodecahedron and the great icosahedron.  Together, these four solids make up the Kepler-Poinsot solids, and in 1812, Augustin Cauchy proved that this list comprises all of the regular non-convex polyhedra (Wikipedia).


The small stellated dodecahedron is the first stellation of the dodecahedron.  It is can be thought of as being formed in two different ways.  The first is done by extending the edges of the dodecahedron until they intersect again, making a star-like solid figure with twelve regular pentagrams for faces and five pentagram legs coming together at one vertex.  The other way one can envision the small stellated dodecahedron being shaped is by focusing on one pentagon of the dodecahedron.  There are five faces adjacent to this pentagons.  If we extend the facial planes of each of the five pentagons surrounding our first pentagon, one of the vertices of the small stellated dodecahedron is created, with five isosceles (golden) triangles with angle measures of 36E, 72E, and 72E meeting at the vertex.  This process can be repeated at each of the twelve faces of the dodecahedron to complete the small stellated dodecahedron.  This is why this particular stellation of the dodecahedron has twelve vertices and twelve regular pentagrams.  Before reaching the vertex, one leg each from five pentagrams cut through the center of a sixth, then meet above that sixth pentagram in the shape of a pyramid with pentagonal base.  This feature allows one to easily see the original dodecahedron that was stellated to make the small stellated dodecahedron.


The second stellation of the dodecahedron is named the great dodecahedron.  This also can be  made in two ways: as a stellation of the small stellated dodecahedron or a stellation of the dodecahedron itself.  Consider the small stellated dodecahedron.  If we extend the legs of each of the twelve pentagrams, in what is similar to a process of “filling-in the gaps” between each pair of adjacent legs of a single pentagram to make them into regular pentagons, we achieve twelve intersecting pentagons and the great dodecahedron.  This version of stellation is slightly different than the process used to form the small stellated dodecahedron.  In this case we are extending the facial planes to, in a way, fill in the gaps that the pentagram leaves instead of simply extending the polyhedral edges.  This method also differs from the method used to create the great dodecahedron from the original dodecahedron.  If we focus on half of the dodecahedron (the top half) with one pentagonal face parallel to the ground.  The five pentagonal faces adjacent to the top pentagon extend and meet to form the small stellated dodecahedron, but if we keep extending those five facial planes they meet again.  However, it is not the faces adjacent in the dodecahedron that meet again, but rather we have the case of one face meeting with two opposite faces to make an edge, since there are five faces (an odd number) not including the top horizontal face.  The faces adjacent in the dodecahedron cut through or intersect one another.  This is what creates the star shape resting on top of each pentagonal face of the great dodecahedron.  While the faces of the great dodecahedron are regular pentagons, just like the dodecahedron itself, the pentagons in the great dodecahedron are inverted or simply flipped upside down from their original orientation in the platonic solid.  This is due to the stellation of the lower half of the dodecahedron.  By extending the five non-horizontal faces on the lower half of the dodecahedron with the top and bottom face parallel to the ground, we form the inverted pentagon in the same plane as the top horizontal pentagon of the dodecahedron.  By focusing on the pentagonal edges of the great dodecahedron we can easily recognize a familiar shape.  If the non-convex areas of the great dodecahedron are “covered” with equilateral triangles, we get the icosahedron, which leads to the interesting revelation that the vertex placement and thus the convex edge arrangement of the great dodecahedron and the icosahedron is the exact same. 


The third and final stellation of the dodecahedron is the great stellated dodecahedron.  This stellation is formed by stellating the great dodecahedron.  By extending the facial planes of three of the pentagonal faces of the great dodecahedron, in particular three planes that intersect to form a concave triangular pyramid, we can create a pentagram.  Twelve of these pentagrams intersect to form the great stellated dodecahedron, which has thirty edges and twenty vertices, with three pentagrams coming together at each vertex.  This is the last stellation of the dodecahedron because when we stellate the pentagram faces of the great stellated dodecahedron,

two faces do not meet again to form an edge, which is a necessary condition for all polyhedra, convex or concave.


The final Kepler-Poinsot solid is the great icosahedron.  It is, as the name indicates, a stellation of the icosahedron.  According to Donald Coxeter, who wrote The Fifty-Nine Icosahedra, which is considered to be the standard on stellations of the icosahedron, the great icosahedron is the seventh stellation of the icosahedron (Wikipedia).  Coxeter found fifty-eight stellations of the icosahedron with the icosahedron itself making fifty-nine total.  It has, as it must, twenty faces, each of which is an equilateral triangle.  Three triangles come together at each vertex, creating twelve vertices and making the great icosahedron a regular solid.  An interesting facet of the great icosahedron is its edge arrangement.  The great icosahedron has more faces than any of the other Kepler-Poinsot solids; however, it has exactly the same convex edge structure as the small stellated dodecahedron.  When two triangles of the great icosahedron cross each other, it creates a concave edge, and when three intersect it creates an “indentation” of sorts.  If these indentations were to be filled in, we would have the small stellated  dodecahedron.
The class of the four Kepler-Poinsot solids, like the five platonic solids, has within it a concept of duality.  Each of the Kepler-Poinsot solids has another of the Kepler-Poinsot solids as its dual.  The dual of the small stellated dodecahedron is the great dodecahedron.  Each of these two polyhedra has twelve vertices and twelve faces.  Each vertex of the small stellated dodecahedron has a vertex in what would be the center of each of the twelve pentagonal faces of the great dodecahedron.  The same can be said for the vertices of the great dodecahedron and the faces of the small stellated dodecahedron.  This leaves the great stellated dodecahedron and the great icosahedron, which are also dual solids.  The great stellated dodecahedron has twenty vertices and twelve faces, whereas the great icosahedron has twelve vertices and twenty faces.  Again, this makes it possible for the vertices of the great stellated dodecahedron to line up with the faces of the great icosahedron and vice versa for complementary positioning.


The Kepler-Poinsot solids are just the beginning of the discussion of stellations and non-convex polyhedra, but these four solids alone make for a very nice topic.  Non-convex polyhedra is one of the most interesting topics I have explored in my whole mathematical career.  Besides the fact that they make fascinating shapes, the way they are formed is very intriguing.  The art of stellation, the extension and consequent intersection of facial planes is just neat.  It becomes a fun challenge to visualize how all of the faces cross of meet within the polyhedron.  All of the solids that are made by stellations are somehow related to the original polyhedron that was stellated and the duals of the original polyhedron and the stellation.  And we get to enjoy the task of figuring out how they are all related.


The models I have included are the three stellations of the dodecahedron, the small stellated dodecahedron (pink), the great dodecahedron (navy blue), and the great stellated dodecahedron (light blue).  I also made a much smaller version of the great dodecahedron (also navy blue), but then I realized that it was too small to really help understand what is happening, so I made the larger one.  I then colored one face of each in order to allow better focus on the faces rather than just the vertices.  I have also included part of the stella octangula.  Particularly I have shown how the stellation of one face meets two others to make a vertex, and then I have shown the rest of the stellation for that particular face to show the inverse relationship between the original triangle and the stellated triangle.  
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