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"Now | will have less distractioh- LeonhardEuler, referring to losing the sight of one
eye, quoted iMathematical Circle§Howard Eves, 1969)

Introduction
To most people, including some mathematics teachers, geometry is synonymous with
ancient Greek geometry, especially as epitomized in EuBlidleentsof 300 BC. Sadly,
many are not even aware of the significant extensions and investigatiéqmltinius,
Ptolemy,Pappus, and many others until about 320 AD. Even more people are completely
unaware of the major developments that took place in synthetic Euclidean plane geometry
from about 1750-1940, and more recently again from about 1990 onwards (stimulated in no
small way by the current availability of dynamic geometry software).

The purpose of this article is therefore to give a brief historical background to the
discovery of the Nine-point circle and tlt&uler line, and a simple, but possibly new

generalization and proof of the latter, that may be of interest to teachers and students.

High School Background

The reader is reminded of the following three classic concurrency results from Euclid's

Elementsthat are fortunately still mentioned (though seldom with proof) in a few South

African high school textbooks. However, since these results are no longer required

"theorems" for the final matric examination from about the late 1980's, it is likely that most

teachers have simply ignored teaching them, thus producing a generation of children

unacquainted with these remarkable results from our geometric heritage.

Q) The medians (lines from the vertices to the midpoints of the opposite sides) of a
triangle are concurrent at tkentroid(centre of gravity) of a triangle (see Figure 1).

(2) The altitudes (perpelicular lines from the vertices to the opposite sides) of a
triangle are concurrent at tbethocentre(see Figure 2).

(3) The perpendicular bisectors of the sides (lines through the midpoints of the sides

and perpendicular to them) of a triangle are concurrent a@irtvencentrewhich is
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the centre of the circle through the three vertices (see Figure 3).

Figure 1: Centroid

Figure 2: Orthocentre

-

/

Figure 3: Circumcentre

Ceva's Theorem

In 1678 an Italian mathematician named Giova@eva discovered a surprising
generalization of the altitude and median (and angle bisexdncurrencies, namely, that if
in any triangle, line segmentd, BF andCE are concurrent (witD, F andE respectively

AF CD BE AF CD BE
X x =1. Conversely, if— x x =1,
FC DB EA FC DB EA

thenline segment#\D, BF andCE are concurrent (see Figure 4).Geva'shonour, thdine

on sidesBC, AC andAB), then
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segmentsAD, BF and CE joining the vertices of a triangle to any given points on the
opposite sides, are calledvians

A

B D C

Figure 4: Ceva's Theorem

Ceva's theorem is a very important and useful theorem that has to form part of the standard
armoury of any high school student aspiring to be competitive at the Third Round level of
the SA Mathematics Olympiad. Students who participate in the workshops and Summer
School of the Mathematical Talent Search organized under the auspices of the SA
Mathematical Society (SAMS) are well acquainted with this result, as are all the SA team

members of the International Mathematics Olympiad (IMO).

Homothetic Polygons

Another valuable result that is usually also well known to successful Mathematics
Olympiad contestants is the following theorem: If two polygonshamaothetic(that is

similar and their corresponding sides are parallel), then the lines connecting corresponding

vertices are concurrent at theantre of similarity (see Figure 5).

Figure 5: Homothetic Polygons
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Figure 6: Nine-Point Circle & Euler Line

The Nine-point Circle andEuler Line

Although Leonhard Euler was apparently the first person in 1765 to show that the
midpoints of the sides of a triangle and the feet of the altitudes determine a unique circle, it
was not until 1820 thaBrianchonand Ponceletshowed that the three midpoints of the
segments from therthocentreto the vertices also lie on the same circle, hence its name, the
nine-point circle(see Figure 6). The nine-point circle is often also referred to d&sulbe

circle inhonour ofEuler. It is also sometimes called theuerbach circle ihonour of Karl
Feuerbach who in 1822 proved the stunning theorem that the nine-point circle is tangent to
theincircles andexcircles of the triangle!

A result closely associated with the nine-point circle is that oEther line (which
Euler presumably discovered more or less simultaneously), namely tloaththesntre Ki),
centroid G), circumcentre Q) and thecentre of nine-point circleN) are collinear.
Moreover HG = 2GO andHN = 3NG.

The historical background referred @bove is widely available in standard
historical resource books like Boyer (1968), Kramer (1970), etc. Books such as these ought
to be regularly consulted by teachers and lecturers in order to bring a much-needed
historical perspective to mathematics in the classroom. For classic synthetic proofs of the
results mentioned above, readers can for example consult any advanced geometry textbooks
like Coxeter &Greitzer (1967) oPosamentier (2002).

Experimental Discovery
In October 2002, | was wondering how one might generalize the nine-point circle and
started off by considering what happens if instead of the concurrent altitudes, one took any

three concurrentevians (lines from the vertices to the opposite sides). Next | constructed
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the midpoints of the segments from tewian pointH to the vertices as shown in Figure 7,
wondering whether there was any significance in them. Dynamically dragging and
manipulating the triangle witlSketchpadfor a while, it suddenly visually seemed to
suggest that the feet of theviansD, E andF, and the midpointg, K andL all lie on an
ellipse. This was immediately confirmed when | useSkatchpadool to draw an ellipse
through any five of these points, the ellipse passing through the remaining sixth point.
Much to my surprise, and delight, | next noticed with further dragging that this ellipse
always passed through the midpoints of the sides of triaABIE (and turned into a
hyperbola ifD, E andF was dragged onto the extensions of the sides of the triangle). In
other words, nine points in total lie on this uniquely determined conic!

After laboring through long analytic geometry proofs (with the aid of the symbolic
computer algebra of the TI-92), | later found out, much to my dismay, that the discovery
was not novel at all, and was already known in the 1890's appearing in some projective
geometry texts (Russell, 1893:212). It also appears in standard projective geometry texts
such as Baker (1922:41-42), which were required study material for entrance exams into
the mathematical doctoral programs of Oxford and Cambridge in the 1920's and 1930's. It
seems quite sad that such a beautiful projective geometry result has become forgotten and
neglected.

This nine-point conic result, however, contains a generalization dulex line as
a corollary, which does not appear in any of the three references mentioned;raechan
search has also provided no explicit mention of it in the mathematical literature.
Furthermore, my initial analytic proofs of the nine-point conic ancEiller generalization
(see DeVilliers, in press), although confirming the results, do not provide any satisfactory
insight into why the results are true. In contrast, the proof given further down fEukie
generalization is not only synthetic, but also explanatory in terms of similarity.

For the sake of completeness, the nine-point conic theoremEatet line

generalization are now formally stated, and a proof of the latter given.
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Figure 7: Nine-point Conic andEuler Line Generalization

The nine-point conic

Givenany triangleABC, and threeeviansconcurrent irH, then the feet of theevians(D,

E and F), the midpoints of the sides of the triangl€ ¥ and Z), and the respective
midpointsL, J andK of the segmentdA, HB andHC, lie on a conic (Figure 7).

(Note that an ellipse is obtained when the feet of allcng@ansare on the sides of the
triangle, but when some of the feet of tevianslie on the extensions of the sides, the
conic becomes a hyperbol&ilvester (2001:214-215) also explains how a six-point
parabola can (theoretically) be obtained as a limiting case agvien pointH is dragged

off towards infinity.)

Euler Line generalization

Given the above configuration for any trian@BC, then thecentreN of the conic, the
centroidG of ABC and the point otevian concurrency, are collinear, anéiN = 3NG.
(Note that thesircumcentreO of triangleABC does not necessarily lie on this gené&naller
line. However, note that just as with the nine-point circle,cr@treN of the nine-point

conic, is the common midpoint of segmeXts YJandZK - see proof below).

Proof
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Construct the pointl as the image of in N under a half-turn. Sinc@ is thecentroid of
XYZ (andABC), andN is the commortentroid (midpoint andentre of gravity) oKL, YJ
andZK (as they are the respective diagonals of parallelogiaths, JXYL andZJKY), it
follows thatM is thecentroid ofJKL. And sinceBCA is the image of the enlargement of
JKL fromH with scale factor 2, it follows thad, M, N andG are all collinear, and th&G

= 2HM, MN = NG which implies thatHHN = 3NG.

Figure 8: Further Euler Line generalization

Further Euler Line generalization
The abovetuler line generalization generalizes even further as follows. Given any triangle

ABC with midpoints of the sideX, Y andZ and threeevians concurrent ikl as shown in

Figure 8. WithH ascentre of similarity and scale fact?(n construct trianglé.JK similar

to ABC. LetN be thecentre of similarity betweehJK and the median triang€YZ Then

H, N andG are collinear, anddN = kil NG.

Proof
Construct thecentroidG' of triangle LIK. SinceABC maps ontd_JK under the similarity

situated atH, it follows that % =k andH, G' andG are collinear. Since the median

triangle is also similar tABC under a half-turn aroun@ with a scale factor of%, it
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follows thatLJK is similar toXYZ with a scale facto%. More over LJK is homothetic to

XYZ Therefore lined.X, JY andKZ are concurrent aN (with 2XN = kNL, etc.). Then
since thecentroid of the median triangle coincides with demtroidG of ABC, and XYZ

o . N k
maps ontd_JK under the half-turn and similarity situated\ait follows that% = > and

G', N andG arecollinear. Since the straight line throuGhandG' is unique, it follows that

H, G', N andG are collinear.

kx

x(k - 1)

X G' N G
H ® o 8.
x(k - 1) ‘ X(k-1)

k+2 k+2

Figure 8: Ratios between segments

LetHG' = x, then from the ratios into which HG is divided as shown in Figure 8, it follows

HN_ 3k k+2 _ 3
NG k+2 kxtk-1) k-1

that

Looking Back
Instead of respectively using parallelograms laowhothetic polygons to provéL, YJand
ZK concurrent alN for theEuler line generalization and Furthiuler line generalization,
Ceva's theorem could be used. Further note thatthdtdr generalizations can be viewed
as theorems about quadrilaterBCH An interesting physical interpretation of both
generalizations is to consider finding tbentroidN of point masses & B, C andH. For
example, for the firsEulerline generalization, consider unit masses, &, C andH. Then
N is thecentroidof 2 masses af andL, etc., and also theentroidof 3 masses & and 1 at
H; henceHN = 3NG. Similarly, for the FurtheEuler generalization, consider unit masses at
A, B andC and mas& - 1 atH.

Since the FurtheEuler generalization no longer involves a conic, it is perhaps less
interesting than th&uler generalization, which it generalizes. Indeed, this is often the case
with generalization, since the general case frequently involves fewer properties than the

special case.
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Concluding Comment

As mathematicians we have an educational obligation to share new developments in our
discipline with our students to combat the pervasive misconception that mathematics is a
sterile and dead subject. Euclidean plane geometry is particularly suited as students can
easily be led to some visual appreciation even without formal proof. More over, it may just
stimulate their own creativity and inspire them to engage in some mathematical research
themselves. The availability of dynamic geometry software also encourages a kind of
experimental approach in which it is easy to make and check conjectures that lies well

within the means of average students, and not just a select few.
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Note: A Dynamic Geometry $ketchpad ¥sketch in zipped format\inzip) of the results
discussed here can be downloaded directly from:

http://mysite.mweb.co.za/residents/profmd/9pointeuler.zip

(This sketch can also be viewed with a free demo versioBkefchpad 4hat can be
downloaded fromhttp://www.keypress.com/sketchpad/sketchdemo)html
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