Day 1

Graphing Linear Equations Using Tables

by Chris Reid


A solution of an equation is the ordered pair (x, y) that makes the equation true for the two variables x and y.

The set of all points (x, y) that are solutions to the equation is the graph of an equation in x and y.

Drections:

Use a table of values to graph the equation.

Process:

Step 1: Rewrite the equation in function form, if necessary.

Step 2: Choose a few values of x and make a table of values.

Step 3: Plot the points from the table. The graph of the equation is the line through theses points.

 

Example 1:

Use a table of values to graph the equation y = 2x - 1.

x

2x -1

y

Points

-1

2(-1)-1

-3

(-1, -3)

0

2(0)-1

-1

(0, -1)

1

2(1)-1

1

(1, 1)

2

2(2)-1

3

(2, 3)

 

Example 2:

Use a table of values to graph the equation 3x + 4y = 8.

First, write in function form.

3x + 4y = 8

4y = -3x + 8

y = -3/4 x + 2

 x

 -3/4 x + 2

 y

 Points

 -4
-3/4(-4) + 2

 (-4, 5)

 0
 -3/4(0) + 2

 (0, 2)

 4
 -3/4(4) + 2

 -1

 (4, -1)

8
 -3/4(8) + 2

 -4

 (8, -4)

 

Special Graphs:

Example 3:

Graph x = -3.

Each value of x is always -3. Choose different values for y in the table.

x

y

Points

-3

0

(-3, 0)

-3

1

(-3, 1)

-3

2

(3, 2)

-3

3

(-3. 3)

 

Example 4:

 

Graph y = 2.

Each value of y is always 2. Choose different values for x in the table.

x

y

Points

0

2

(0, 2)

1

2

(1, 2)

2

2

(2, 2)

3

2

(3, 2)

 

Assignment:

Use a table of values to graph each equation.

1. y = x + 1

2. y = -x - 3

3. y = 2x + 1

4. y = -3x + 2

5. 2x - y = 6

6. 3x + 2y = 8

7. x = 4

8. x = -1

9. y = 3

10. y = -2


Return to Unit Page