Paula Whitmire

Assignment 12

Fibonacci Numbers

Column A and Column B

0
1 0
1 1
2 0.5
3 0.666666666666667
5 0.6
8 0.625
13 0.615384615384615
21 0.619047619047619
34 0.617647058823529
55 0.618181818181818
89 0.617977528089888
144 0.618055555555556
233 0.618025751072961
377 0.618037135278515
610 0.618032786885246
987 0.618034447821682
1597 0.618033813400125
2584 0.618034055727554
4181 0.618033963166707
6765 0.618033998521803
10946 0.618033985017358
17711 0.618033990175597
28657 0.618033988205325
46368 0.618033988957902
75025 0.618033988670443
121393 0.618033988780243
196418 0.618033988738303
317811 0.618033988754323
514229 0.618033988748204
832040 0.618033988750541
1346269 0.618033988749648
2178309 0.618033988749989
3524578 0.618033988749859
5702887 0.618033988749909
9227465 0.61803398874989
14930352 0.618033988749897
24157817 0.618033988749894
39088169 0.618033988749895
63245986 0.618033988749895

 

 

The first 40 Fibonacci Numbers are in the first column (a) above. The fibonacci sequence is the recursive A(n) = A (n-2) + A ( n-1). In column 2 (b) above, the terms are the ratio of each pair of adjacent terms in column 1. For example, b2=a1/a2 or b7=a6/a7. The ratio converges to .61803 which is the golden ratio.

Now we will pick the first two numbers for Column C as 1 and 3. We will use the same recursive formula for Columnc C. Column D will again be the ratio of the adjacent pair.

Again the ratio approaches the golden ratio of .61803.

Column C and Column D

1
3 0.333333333333333
4 0.75
7 0.571428571428571
11 0.636363636363636
18 0.611111111111111
29 0.620689655172414
47 0.617021276595745
76 0.618421052631579
123 0.617886178861789
199 0.618090452261307
322 0.618012422360248
521 0.618042226487524
843 0.61803084223013
1364 0.618035190615836
2207 0.618033529678296
3571 0.618034164099692
5778 0.618033921772239
9349 0.618034014333084
15127 0.618033978977986
24476 0.618033992482432
39603 0.618033987324193
64079 0.618033989294465
103682 0.618033988541888
167761 0.618033988829346
271443 0.618033988719547
439204 0.618033988761487
710647 0.618033988745467
1149851 0.618033988751586
1860498 0.618033988749249
3010349 0.618033988750142
4870847 0.618033988749801
7881196 0.618033988749931
12752043 0.618033988749881
20633239 0.6180339887499
33385282 0.618033988749893
54018521 0.618033988749896
87403803 0.618033988749895
141422324 0.618033988749895
228826127 0.618033988749895

The process was repeated in Excel using constants of 2,5 and 2,14 and -5,12 and 2,22 as the first 2 elements of the column. Finding the ratio of the adjacent pair gave the golden ratio value of .61803 every time.

Columns M N O P

are below.

0.384105960264901 0.384615384615385 0.238095238095238 0.147058823529412
0.381147540983607 0.380952380952381 0.235294117647059 0.145454545454545
0.382278481012658 0.382352941176471 0.236363636363636 0.146067415730337
0.381846635367762 0.381818181818182 0.235955056179775 0.145833333333333
0.382011605415861 0.382022471910112 0.236111111111111 0.145922746781116
0.381948595337717 0.381944444444444 0.236051502145923 0.145888594164456
0.381972663465091 0.381974248927039 0.236074270557029 0.145901639344262
0.381963470319635 0.381962864721485 0.236065573770492 0.145896656534954
0.381966981797658 0.381967213114754 0.236068895643364 0.145898559799624
0.381965640533705 0.381965552178318 0.23606762680025 0.145897832817337
0.381966152851137 0.381966186599875 0.236068111455108 0.14589811049988
0.381965957163319 0.381965944272446 0.236067926333413 0.14589800443459
0.381966031909418 0.381966036833293 0.236067997043607 0.145898044947926
0.38196600335895 0.381966001478197 0.236067970034716 0.145898029473209
0.381966014264258 0.381966014982642 0.236067980351194 0.145898035384025
0.381966010098801 0.381966009824403 0.23606797641065 0.145898033126294
0.381966011689864 0.381966011794675 0.236067977915804 0.14589803398867
0.381966011082132 0.381966011042098 0.236067977340886 0.145898033659272
0.381966011314265 0.381966011329557 0.236067977560485 0.145898033785091
0.381966011225598 0.381966011219757 0.236067977476606 0.145898033737032
0.381966011259466 0.381966011261697 0.236067977508645 0.145898033755389
0.38196601124653 0.381966011245677 0.236067977496407 0.145898033748377
0.381966011251471 0.381966011251796 0.236067977501082 0.145898033751056
0.381966011249584 0.381966011249459 0.236067977499296 0.145898033750033
0.381966011250304 0.381966011250352 0.236067977499978 0.145898033750423
0.381966011250029 0.381966011250011 0.236067977499718 0.145898033750274
0.381966011250134 0.381966011250141 0.236067977499817 0.145898033750331
0.381966011250094 0.381966011250091 0.236067977499779 0.145898033750309
0.381966011250109 0.38196601125011 0.236067977499794 0.145898033750318
0.381966011250104 0.381966011250103 0.236067977499788 0.145898033750315
0.381966011250106 0.381966011250106 0.23606797749979 0.145898033750316
0.381966011250105 0.381966011250105 0.236067977499789
0.381966011250105 0.381966011250105
.

 

Further examination reveals the following:

Column M is term K1/K3 and yields .38196. Then if you calculate .38196/.61803 you obtain

.618028 which is very close to the golden ratio again.

Next, we try Column N and calculate the term A1/A3 and get .38196.
Then in Column O we evaluate A1/A4 and get .23606. Take this value and divide by the golden ratio: .23606/.61803 = .38196 !!!!!!!

Trying Column P with A1/A5 , we get a converging value of .14705.

This value divided by the previous colum value of .23606 yields .622935, very close to the golden ratio. If more place values were used, then a more accurate value could be found.

 

RETURN