EMAT 6680 Assignment 12


I generated the Fibonnaci sequence using EXCEL spreadsheet. In the first column, I set f(0)=1 and f(1)=1. The rest of the sequence is generated using the formula f(n) = f(n-1) + f(n-2). In columns 2, I construct the ratio of each pair of adjacent terms in Fibonnaci. As n increases, the ratio converges to 1.618. The ratio of every second , third and fourth term converges to 2.618 , 4.23, 6.854 respectively as n increases.

Click Here to see the results in EXCEL.

1
1 1
2 2 2
3 1.5 3 3
5 1.66666666666667 2.5 5 5
8 1.6 2.66666666666667 4 8
13 1.625 2.6 4.33333333333333 6.5
21 1.61538461538462 2.625 4.2 7
34 1.61904761904762 2.61538461538462 4.25 6.8
55 1.61764705882353 2.61904761904762 4.23076923076923 6.875
89 1.61818181818182 2.61764705882353 4.23809523809524 6.84615384615385
144 1.61797752808989 2.61818181818182 4.23529411764706 6.85714285714286
233 1.61805555555556 2.61797752808989 4.23636363636364 6.85294117647059
377 1.61802575107296 2.61805555555556 4.23595505617978 6.85454545454545
610 1.61803713527851 2.61802575107296 4.23611111111111 6.85393258426966
987 1.61803278688525 2.61803713527851 4.23605150214592 6.85416666666667
1597 1.61803444782168 2.61803278688525 4.23607427055703 6.85407725321888
2584 1.61803381340013 2.61803444782168 4.23606557377049 6.85411140583554
4181 1.61803405572755 2.61803381340013 4.23606889564336 6.85409836065574
6765 1.61803396316671 2.61803405572755 4.23606762680025 6.85410334346505
10946 1.6180339985218 2.61803396316671 4.23606811145511 6.85410144020038
17711 1.61803398501736 2.6180339985218 4.23606792633341 6.85410216718266
28657 1.6180339901756 2.61803398501736 4.23606799704361 6.85410188950012
46368 1.61803398820532 2.6180339901756 4.23606797003472 6.85410199556541
75025 1.6180339889579 2.61803398820533 4.23606798035119 6.85410195505207
121393 1.61803398867044 2.6180339889579 4.23606797641065 6.85410197052679
196418 1.61803398878024 2.61803398867044 4.2360679779158 6.85410196461598
317811 1.6180339887383 2.61803398878024 4.23606797734089 6.85410196687371
514229 1.61803398875432 2.6180339887383 4.23606797756049 6.85410196601133
832040 1.6180339887482 2.61803398875432 4.23606797747661 6.85410196634073
1346269 1.61803398875054 2.6180339887482 4.23606797750864 6.85410196621491

Next, I explore sequences where f(0) and f(1) are arbitary integers other than 1. For f(0)=1 and f(1)=3, the sequence is a Lucas sequence and all such sequence have the same limit of ratio of successive terms. 
1
3 3
4 1.33333333333333 4
7 1.75 2.33333333333333 7
11 1.57142857142857 2.75 3.66666666666667 11
18 1.63636363636364 2.57142857142857 4.5 6
29 1.61111111111111 2.63636363636364 4.14285714285714 7.25
47 1.62068965517241 2.61111111111111 4.27272727272727 6.71428571428571
76 1.61702127659574 2.62068965517241 4.22222222222222 6.90909090909091
123 1.61842105263158 2.61702127659574 4.24137931034483 6.83333333333333
199 1.61788617886179 2.61842105263158 4.23404255319149 6.86206896551724
322 1.61809045226131 2.61788617886179 4.23684210526316 6.85106382978723
521 1.61801242236025 2.61809045226131 4.23577235772358 6.85526315789474
843 1.61804222648752 2.61801242236025 4.23618090452261 6.85365853658537
1364 1.61803084223013 2.61804222648752 4.2360248447205 6.85427135678392
2207 1.61803519061584 2.61803084223013 4.23608445297505 6.85403726708075
3571 1.6180335296783 2.61803519061584 4.23606168446026 6.85412667946257
5778 1.61803416409969 2.6180335296783 4.23607038123167 6.85409252669039
9349 1.61803392177224 2.61803416409969 4.23606705935659 6.85410557184751
15127 1.61803401433308 2.61803392177224 4.23606832819938 6.85410058903489
24476 1.61803397897799 2.61803401433308 4.23606784354448 6.85410249229908
39603 1.61803399248243 2.61803397897799 4.23606802866617 6.85410176531672
64079 1.61803398732419 2.61803399248243 4.23606795795597 6.85410204299925
103682 1.61803398929446 2.61803398732419 4.23606798496486 6.85410193693396
167761 1.61803398854189 2.61803398929446 4.23606797464839 6.8541019774473
271443 1.61803398882935 2.61803398854189 4.23606797858893 6.85410196197258
439204 1.61803398871955 2.61803398882935 4.23606797708378 6.85410196788339
710647 1.61803398876149 2.61803398871955 4.23606797765869 6.85410196562566
1149851 1.61803398874547 2.61803398876149 4.23606797743909 6.85410196648804
1860498 1.61803398875159 2.61803398874547 4.23606797752297 6.85410196615864
3010349 1.61803398874925 2.61803398875159 4.23606797749093 6.85410196628446

 

6
5 0.833333333333333
11 2.2 1.83333333333333
16 1.45454545454545 3.2 2.66666666666667
27 1.6875 2.45454545454545 5.4 4.5
43 1.59259259259259 2.6875 3.90909090909091 8.6
70 1.62790697674419 2.59259259259259 4.375 6.36363636363636
113 1.61428571428571 2.62790697674419 4.18518518518519 7.0625
183 1.61946902654867 2.61428571428571 4.25581395348837 6.77777777777778
296 1.61748633879781 2.61946902654867 4.22857142857143 6.88372093023256
479 1.61824324324324 2.61748633879781 4.23893805309735 6.84285714285714
775 1.61795407098121 2.61824324324324 4.23497267759563 6.85840707964602
1254 1.61806451612903 2.61795407098121 4.23648648648649 6.85245901639344
2029 1.61802232854864 2.61806451612903 4.23590814196242 6.85472972972973
3283 1.61803844258255 2.61802232854864 4.23612903225806 6.85386221294363
5312 1.61803228754188 2.61803844258255 4.23604465709729 6.8541935483871
8595 1.61803463855422 2.61803228754188 4.23607688516511 6.85406698564593

The following obervations are made as n tends to larger values:

converges to 1.618

converges to 2.61

converges to 4.23

 

converges to 6.85

converges to 11.09

 

When

n= 2, f(2) = f(1) + f(0)

n= 3, f(3) = 2f(1) + f(0)

n= 4, f(4) = 3f(1) + 2f(0)

n= 5, f(5) = 5f(1) + 3f(0)

n= 6, f(6) = 8f(1) + 5f(0)

n= 7, f(7) = 13f(1) + 8f(0)

n= 8, f(8) = 21f(1) + 13f(0)

We want to prove that

converges to 1.618 as n increases

Proof by induction:

n=2

< 2

n=3

< 2

General case:

< 2

We want to prove that

converges to 2.61 as n increases

Proof by induction:

n=1

< 3

n=2

< 3

General case:

< 3

Similarly, we can prove that

< 5

I would like to explore a little more on: converges to 1.618

This ratio approaches a limit value of 1.618. this is actually the golden ratio .

Recently I happen to come across a page from Alfred S. Posamentier, that attempts to connect Fibonacci sequence and geometery. It states the following result:

If

,

then the above ratio becomes

That is,

I would like to analyze this expression and show that it tends to

as n tends to large values.

Using limit thereom,

tends to zero as n tends to infinity

tends to zero as n tends to infinity

and we are left with

Hence, the ratio is the golden ratio.

 

 


Return