Intermath:Investigations: Geometry: 3-D
In simplest terms, what is the ratio of the
number of cubic inches in the volume of a cube to the number of
square centimeters in the surface area of the cube, given that
one edge is s centimeters long?
Look at the chart below to see how I discovered the answer through the use of patterns.
Sidle Length | Volume | Surface Area | Vol : Surface Area | Ratio/Side Length |
1 | 1 | 6 | 6 | 6 |
2 | 8 | 24 | 3 | 6 |
3 | 27 | 54 | 2 | 6 |
4 | 64 | 96 | 1.5 | 6 |
5 | 125 | 150 | 1.2 | 6 |
6 | 216 | 216 | 1 | 6 |
7 | 343 | 294 | 0.857142857142857 | 6 |
8 | 512 | 384 | 0.75 | 6 |
9 | 729 | 486 | 0.666666666666667 | 6 |
10 | 1000 | 600 | 0.6 | 6 |
11 | 1331 | 726 | 0.545454545454545 | 6 |
12 | 1728 | 864 | 0.5 | 6 |
13 | 2197 | 1014 | 0.461538461538462 | 6 |
14 | 2744 | 1176 | 0.428571428571429 | 6 |
15 | 3375 | 1350 | 0.4 | 6 |
16 | 4096 | 1536 | 0.375 | 6 |
17 | 4913 | 1734 | 0.352941176470588 | 6 |
18 | 5832 | 1944 | 0.333333333333333 | 6 |
19 | 6859 | 2166 | 0.315789473684211 | 6 |
20 | 8000 | 2400 | 0.3 | 6 |
21 | 9261 | 2646 | 0.285714285714286 | 6 |
22 | 10648 | 2904 | 0.272727272727273 | 6 |
23 | 12167 | 3174 | 0.260869565217391 | 6 |
24 | 13824 | 3456 | 0.25 | 6 |
25 | 15625 | 3750 | 0.24 | 6 |
26 | 17576 | 4056 | 0.230769230769231 | 6 |
27 | 19683 | 4374 | 0.222222222222222 | 6 |
28 | 21952 | 4704 | 0.214285714285714 | 6 |
29 | 24389 | 5046 | 0.206896551724138 | 6 |
30 | 27000 | 5400 | 0.2 | 6 |
31 | 29791 | 5766 | 0.193548387096774 | 6 |
32 | 32768 | 6144 | 0.1875 | 6 |
33 | 35937 | 6534 | 0.181818181818182 | 6 |
34 | 39304 | 6936 | 0.176470588235294 | 6 |
35 | 42875 | 7350 | 0.171428571428571 | 6 |
36 | 46656 | 7776 | 0.166666666666667 | 6 |
37 | 50653 | 8214 | 0.162162162162162 | 6 |
38 | 54872 | 8664 | 0.157894736842105 | 6 |
39 | 59319 | 9126 | 0.153846153846154 | 6 |
40 | 64000 | 9600 | 0.15 | 6 |