Intermath:Investigations: Geometry: 3-D

In simplest terms, what is the ratio of the number of cubic inches in the volume of a cube to the number of square centimeters in the surface area of the cube, given that one edge is s centimeters long?

Look at the chart below to see how I discovered the answer through the use of patterns.

Sidle Length Volume Surface Area Vol : Surface Area Ratio/Side Length
1 1 6 6 6
2 8 24 3 6
3 27 54 2 6
4 64 96 1.5 6
5 125 150 1.2 6
6 216 216 1 6
7 343 294 0.857142857142857 6
8 512 384 0.75 6
9 729 486 0.666666666666667 6
10 1000 600 0.6 6
11 1331 726 0.545454545454545 6
12 1728 864 0.5 6
13 2197 1014 0.461538461538462 6
14 2744 1176 0.428571428571429 6
15 3375 1350 0.4 6
16 4096 1536 0.375 6
17 4913 1734 0.352941176470588 6
18 5832 1944 0.333333333333333 6
19 6859 2166 0.315789473684211 6
20 8000 2400 0.3 6
21 9261 2646 0.285714285714286 6
22 10648 2904 0.272727272727273 6
23 12167 3174 0.260869565217391 6
24 13824 3456 0.25 6
25 15625 3750 0.24 6
26 17576 4056 0.230769230769231 6
27 19683 4374 0.222222222222222 6
28 21952 4704 0.214285714285714 6
29 24389 5046 0.206896551724138 6
30 27000 5400 0.2 6
31 29791 5766 0.193548387096774 6
32 32768 6144 0.1875 6
33 35937 6534 0.181818181818182 6
34 39304 6936 0.176470588235294 6
35 42875 7350 0.171428571428571 6
36 46656 7776 0.166666666666667 6
37 50653 8214 0.162162162162162 6
38 54872 8664 0.157894736842105 6
39 59319 9126 0.153846153846154 6
40 64000 9600 0.15 6

The pattern that I discovered was that the ration of the volume to the surface area was equal to the ratio of the side length to six. So this means volume/surface area = side length/6. So in simplest terms, if the ratio of the volume to the surface area of a cube with side length s would be s/6.

Home