This spreadsheet lists some of the ratios for the first 25 terms of the Fibonacci sequence.
n | f(n-1)+f(n-2) | Each pair | Every other | Every third | Every fourth | Every fifth |
0 | 1 | 1 | 2 | 3 | 5 | 8 |
1 | 1 | 2 | 3 | 5 | 8 | 13 |
2 | 2 | 1.5 | 2.5 | 4 | 6.5 | 10.5 |
3 | 3 | 1.66666666666667 | 2.66666666666667 | 4.33333333333333 | 7 | 11.3333333333333 |
4 | 5 | 1.6 | 2.6 | 4.2 | 6.8 | 11 |
5 | 8 | 1.625 | 2.625 | 4.25 | 6.875 | 11.125 |
6 | 13 | 1.61538461538462 | 2.61538461538462 | 4.23076923076923 | 6.84615384615385 | 11.0769230769231 |
7 | 21 | 1.61904761904762 | 2.61904761904762 | 4.23809523809524 | 6.85714285714286 | 11.0952380952381 |
8 | 34 | 1.61764705882353 | 2.61764705882353 | 4.23529411764706 | 6.85294117647059 | 11.0882352941176 |
9 | 55 | 1.61818181818182 | 2.61818181818182 | 4.23636363636364 | 6.85454545454545 | 11.0909090909091 |
10 | 89 | 1.61797752808989 | 2.61797752808989 | 4.23595505617978 | 6.85393258426966 | 11.0898876404494 |
11 | 144 | 1.61805555555556 | 2.61805555555556 | 4.23611111111111 | 6.85416666666667 | 11.0902777777778 |
12 | 233 | 1.61802575107296 | 2.61802575107296 | 4.23605150214592 | 6.85407725321888 | 11.0901287553648 |
13 | 377 | 1.61803713527851 | 2.61803713527851 | 4.23607427055703 | 6.85411140583554 | 11.0901856763926 |
14 | 610 | 1.61803278688525 | 2.61803278688525 | 4.23606557377049 | 6.85409836065574 | 11.0901639344262 |
15 | 987 | 1.61803444782168 | 2.61803444782168 | 4.23606889564336 | 6.85410334346505 | 11.0901722391084 |
16 | 1597 | 1.61803381340013 | 2.61803381340013 | 4.23606762680025 | 6.85410144020038 | 11.0901690670006 |
17 | 2584 | 1.61803405572755 | 2.61803405572755 | 4.23606811145511 | 6.85410216718266 | 11.0901702786378 |
18 | 4181 | 1.61803396316671 | 2.61803396316671 | 4.23606792633341 | 6.85410188950012 | 11.0901698158335 |
19 | 6765 | 1.6180339985218 | 2.6180339985218 | 4.23606799704361 | 6.85410199556541 | 11.090169992609 |
20 | 10946 | 1.61803398501736 | 2.61803398501736 | 4.23606797003472 | 6.85410195505207 | 11.0901699250868 |
21 | 17711 | 1.6180339901756 | 2.6180339901756 | 4.23606798035119 | 6.85410197052679 | |
22 | 28657 | 1.61803398820532 | 2.61803398820533 | 4.23606797641065 | ||
23 | 46368 | 1.6180339889579 | 2.6180339889579 | |||
24 | 75025 | 1.61803398867044 | ||||
25 | 121393 |
It is interesting that in all of these cases, the ratios all approach one common ratio. For instance, for each pair of terms, the common ratio is about 1.681034. This number is called the Golden Ratio and is denoted by the Greek letter:
The ratio of every other term is given by 1 + this Golden Ratio. Then, an interesting pattern begins to develop. The common ratio of every third term is this number cubed, and for every fourth term, the common ratio is phi raised to the fourth power, etc.
These ratios could be used to predict bigger terms in the Fibonacci sequence. If we wanted to find the 30th term in this sequence, we would multiply 121,393 by 11.09017 because that is the common ratio for when we examine the terms that have a difference of 5. This would show that the 30th term is 1,346,269.