n | f(n-1)+f(n-2) |
0 | 3 |
1 | 4 |
2 | 7 |
3 | 11 |
4 | 18 |
5 | 29 |
6 | 47 |
7 | 76 |
8 | 123 |
9 | 199 |
10 | 322 |
11 | 521 |
12 | 843 |
13 | 1364 |
14 | 2207 |
15 | 3571 |
16 | 5778 |
17 | 9349 |
18 | 15127 |
19 | 24476 |
20 | 39603 |
21 | 64079 |
22 | 103682 |
23 | 167761 |
24 | 271443 |
25 | 439204 |
Let's now look at the ratios again for the different pairs of terms. This is really interesting because the common ratios turn out to be exactly the same as they were for the Fibonacci sequence. No matter what two numbers we choose for f(0) and f(1), the common ratios will remain the same.
n | f(n-1)+f(n-2) | Each pair | Every other | Every third | Every fourth | Every fifth |
0 | 3 | 1.33333333333333 | 2.33333333333333 | 3.66666666666667 | 6 | 9.66666666666667 |
1 | 4 | 1.75 | 2.75 | 4.5 | 7.25 | 11.75 |
2 | 7 | 1.57142857142857 | 2.57142857142857 | 4.14285714285714 | 6.71428571428571 | 10.8571428571429 |
3 | 11 | 1.63636363636364 | 2.63636363636364 | 4.27272727272727 | 6.90909090909091 | 11.1818181818182 |
4 | 18 | 1.61111111111111 | 2.61111111111111 | 4.22222222222222 | 6.83333333333333 | 11.0555555555556 |
5 | 29 | 1.62068965517241 | 2.62068965517241 | 4.24137931034483 | 6.86206896551724 | 11.1034482758621 |
6 | 47 | 1.61702127659574 | 2.61702127659574 | 4.23404255319149 | 6.85106382978723 | 11.0851063829787 |
7 | 76 | 1.61842105263158 | 2.61842105263158 | 4.23684210526316 | 6.85526315789474 | 11.0921052631579 |
8 | 123 | 1.61788617886179 | 2.61788617886179 | 4.23577235772358 | 6.85365853658537 | 11.0894308943089 |
9 | 199 | 1.61809045226131 | 2.61809045226131 | 4.23618090452261 | 6.85427135678392 | 11.0904522613065 |
10 | 322 | 1.61801242236025 | 2.61801242236025 | 4.2360248447205 | 6.85403726708075 | 11.0900621118012 |
11 | 521 | 1.61804222648752 | 2.61804222648752 | 4.23608445297505 | 6.85412667946257 | 11.0902111324376 |
12 | 843 | 1.61803084223013 | 2.61803084223013 | 4.23606168446026 | 6.85409252669039 | 11.0901542111507 |
13 | 1364 | 1.61803519061584 | 2.61803519061584 | 4.23607038123167 | 6.85410557184751 | 11.0901759530792 |
14 | 2207 | 1.6180335296783 | 2.6180335296783 | 4.23606705935659 | 6.85410058903489 | 11.0901676483915 |
15 | 3571 | 1.61803416409969 | 2.61803416409969 | 4.23606832819938 | 6.85410249229908 | 11.0901708204985 |
16 | 5778 | 1.61803392177224 | 2.61803392177224 | 4.23606784354448 | 6.85410176531672 | 11.0901696088612 |
17 | 9349 | 1.61803401433308 | 2.61803401433308 | 4.23606802866617 | 6.85410204299925 | 11.0901700716654 |
18 | 15127 | 1.61803397897799 | 2.61803397897799 | 4.23606795795597 | 6.85410193693396 | 11.0901698948899 |
19 | 24476 | 1.61803399248243 | 2.61803399248243 | 4.23606798496486 | 6.8541019774473 | 11.0901699624122 |
20 | 39603 | 1.61803398732419 | 2.61803398732419 | 4.23606797464839 | 6.85410196197258 | 11.090169936621 |
21 | 64079 | 1.61803398929446 | 2.61803398929446 | 4.23606797858893 | 6.85410196788339 | |
22 | 103682 | 1.61803398854189 | 2.61803398854189 | 4.23606797708378 | ||
23 | 167761 | 1.61803398882935 | 2.61803398882935 | |||
24 | 271443 | 1.61803398871955 | ||||
25 | 439204 |