Fibonacci Sequences:
1 |
1 |
2 |
3 |
5 |
8 |
13 |
21 |
34 |
55 |
89 |
144 |
233 |
377 |
610 |
Here Is the fibonacci sequence. Notice that each term is the sum of the previous two terms.
1 | |
1 | 1 |
2 | 2 |
3 | 1.5 |
5 | 1.66666666666667 |
8 | 1.6 |
13 | 1.625 |
21 | 1.61538461538462 |
34 | 1.61904761904762 |
55 | 1.61764705882353 |
89 | 1.61818181818182 |
144 | 1.61797752808989 |
233 | 1.61805555555556 |
377 | 1.61802575107296 |
610 | 1.61803713527851 |
In this chart, the ratio of each two previous terms is calculated. Notice that it approaches a fixed number 1.618...This number is called phi.
1 | ||
1 | 1 | |
2 | 2 | 2 |
3 | 1.5 | 3 |
5 | 1.66666666666667 | 2.5 |
8 | 1.6 | 2.66666666666667 |
13 | 1.625 | 2.6 |
21 | 1.61538461538462 | 2.625 |
34 | 1.61904761904762 | 2.61538461538462 |
55 | 1.61764705882353 | 2.61904761904762 |
89 | 1.61818181818182 | 2.61764705882353 |
144 | 1.61797752808989 | 2.61818181818182 |
233 | 1.61805555555556 | 2.61797752808989 |
377 | 1.61802575107296 | 2.61805555555556 |
610 | 1.61803713527851 | 2.61802575107296 |
This chart shows the ratio of each term to the term previous to the one before it. Notice that this ratio also approaches a fixed number. In this case the number is 2.618...or phi + 1. This is the square of phi.
Here I changed the initial values. f(0) = 1 and f(1) = 3. This is called the Lucas sequence.
1 | ||
3 | 3 | |
4 | 1.33333333333333 | 4 |
7 | 1.75 | 2.33333333333333 |
11 | 1.57142857142857 | 2.75 |
18 | 1.63636363636364 | 2.57142857142857 |
29 | 1.61111111111111 | 2.63636363636364 |
47 | 1.62068965517241 | 2.61111111111111 |
76 | 1.61702127659574 | 2.62068965517241 |
123 | 1.61842105263158 | 2.61702127659574 |
199 | 1.61788617886179 | 2.61842105263158 |
322 | 1.61809045226131 | 2.61788617886179 |
521 | 1.61801242236025 | 2.61809045226131 |
843 | 1.61804222648752 | 2.61801242236025 |
1364 | 1.61803084223013 | 2.61804222648752 |
The first ratio still approaches phi.
Notice that the same relationship exists for the second ratio as well.
Now I am going to change f(0) = 2 and f(1) = 10. These are just arbitrary numbers that I picked.
2 | ||
10 | 5 | |
12 | 1.2 | 6 |
22 | 1.83333333333333 | 2.2 |
34 | 1.54545454545455 | 2.83333333333333 |
56 | 1.64705882352941 | 2.54545454545455 |
90 | 1.60714285714286 | 2.64705882352941 |
146 | 1.62222222222222 | 2.60714285714286 |
236 | 1.61643835616438 | 2.62222222222222 |
382 | 1.61864406779661 | 2.61643835616438 |
618 | 1.61780104712042 | 2.61864406779661 |
1000 | 1.61812297734628 | 2.61780104712042 |
1618 | 1.618 | 2.61812297734628 |
2618 | 1.61804697156984 | 2.618 |
4236 | 1.61802902979374 | 2.61804697156984 |
Again, the same relationship exists!
From
this investigation, I conclude that regardless of the initial
two numbers, the relationship will remain the same for the ratios.
To see more on Fibonacci sequences, click HERE.
To see more on the Lucas Sequence, click HERE.