Assignment #12:
Investigations Using a
Spreadsheet
By Amber Krug
I used the function
f(x) = x2. The
following spreadsheet is the result:
x |
y |
0 |
0 |
1 |
1 |
2 |
4 |
3 |
9 |
4 |
16 |
5 |
25 |
6 |
36 |
7 |
49 |
8 |
64 |
9 |
81 |
10 |
100 |
11 |
121 |
12 |
144 |
13 |
169 |
14 |
196 |
15 |
225 |
16 |
256 |
17 |
289 |
18 |
324 |
19 |
361 |
20 |
400 |
21 |
441 |
22 |
484 |
23 |
529 |
24 |
576 |
25 |
625 |
26 |
676 |
27 |
729 |
28 |
784 |
29 |
841 |
30 |
900 |
31 |
961 |
32 |
1024 |
We can then graph the data to
find the following:
I then investigated
the Fibonacci Sequence. The
following is a table of the Fibonacci Sequence:
n |
f(n) |
Ratio of every adjacent term |
Ratio of every second term |
Ratio of every third term |
Ratio of every fourth term |
0 |
1 |
|
|
|
|
1 |
1 |
1 |
|
|
|
2 |
2 |
0.5 |
0.5 |
|
|
3 |
3 |
0.666667 |
0.333333 |
0.333333 |
|
4 |
5 |
0.6 |
0.4 |
0.2 |
0.2 |
5 |
8 |
0.625 |
0.375 |
0.25 |
0.125 |
6 |
13 |
0.615385 |
0.384615 |
0.230769 |
0.153846 |
7 |
21 |
0.619048 |
0.380952 |
0.238095 |
0.142857 |
8 |
34 |
0.617647 |
0.382353 |
0.235294 |
0.147059 |
9 |
55 |
0.618182 |
0.381818 |
0.236364 |
0.145455 |
10 |
89 |
0.617978 |
0.382022 |
0.235955 |
0.146067 |
11 |
144 |
0.618056 |
0.381944 |
0.236111 |
0.145833 |
12 |
233 |
0.618026 |
0.381974 |
0.236052 |
0.145923 |
13 |
377 |
0.618037 |
0.381963 |
0.236074 |
0.145889 |
14 |
610 |
0.618033 |
0.381967 |
0.236066 |
0.145902 |
15 |
987 |
0.618034 |
0.381966 |
0.236069 |
0.145897 |
16 |
1597 |
0.618034 |
0.381966 |
0.236068 |
0.145899 |
17 |
2584 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
18 |
4181 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
19 |
6765 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
20 |
10946 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
21 |
17711 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
22 |
28657 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
23 |
46368 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
24 |
75025 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
2 5 |
121393 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
26 |
196418 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
27 |
317811 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
28 |
514229 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
29 |
832040 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
30 |
1346269 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
31 |
2178309 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
32 |
3524578 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
33 |
5702887 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
34 |
9227465 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
We
see that as n increases, the ratio
of every adjacent term approaches 0.618034. When we look at the ratio of every second element, the limit
approaches 0.381966; the ratio of every third element reaches a limit of
0.236068; the ratio of every fourth element reaches a limit of 0.145898.
If
we alter the values of f(n) so
that we result in the following:
n |
f(n) |
Ratio of every adjacent term |
Ratio of every second term |
Ratio of every third term |
Ratio of every fourth term |
0 |
1 |
|
|
|
|
1 |
2 |
0.5 |
|
|
|
2 |
3 |
0.666667 |
0.333333 |
|
|
3 |
5 |
0.6 |
0.4 |
0.2 |
|
4 |
8 |
0.625 |
0.375 |
0.25 |
0.125 |
5 |
13 |
0.615385 |
0.384615 |
0.230769 |
0.153846 |
6 |
21 |
0.619048 |
0.380952 |
0.238095 |
0.142857 |
7 |
34 |
0.617647 |
0.382353 |
0.235294 |
0.147059 |
8 |
55 |
0.618182 |
0.381818 |
0.236364 |
0.145455 |
9 |
89 |
0.617978 |
0.382022 |
0.235955 |
0.146067 |
10 |
144 |
0.618056 |
0.381944 |
0.236111 |
0.145833 |
11 |
233 |
0.618026 |
0.381974 |
0.236052 |
0.145923 |
12 |
377 |
0.618037 |
0.381963 |
0.236074 |
0.145889 |
13 |
610 |
0.618033 |
0.381967 |
0.236066 |
0.145902 |
14 |
987 |
0.618034 |
0.381966 |
0.236069 |
0.145897 |
15 |
1597 |
0.618034 |
0.381966 |
0.236068 |
0.145899 |
16 |
2584 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
17 |
4181 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
18 |
6765 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
19 |
10946 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
20 |
17711 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
21 |
28657 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
22 |
46368 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
23 |
75025 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
24 |
121393 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
25 |
196418 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
26 |
317811 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
27 |
514229 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
28 |
832040 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
29 |
1346269 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
30 |
2178309 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
31 |
3524578 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
32 |
5702887 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
33 |
9227465 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
34 |
14930352 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
or
n |
f(n) |
Ratio of every adjacent term |
Ratio of every second term |
Ratio of every third term |
Ratio of every fourth term |
0 |
1 |
|
|
|
|
1 |
3 |
0.333333 |
|
|
|
2 |
4 |
0.75 |
0.25 |
|
|
3 |
7 |
0.571429 |
0.428571 |
0.142857 |
|
4 |
11 |
0.636364 |
0.363636 |
0.272727 |
0.090909 |
5 |
18 |
0.611111 |
0.388889 |
0.222222 |
0.166667 |
6 |
29 |
0.62069 |
0.37931 |
0.241379 |
0.137931 |
7 |
47 |
0.617021 |
0.382979 |
0.234043 |
0.148936 |
8 |
76 |
0.618421 |
0.381579 |
0.236842 |
0.144737 |
9 |
123 |
0.617886 |
0.382114 |
0.235772 |
0.146341 |
10 |
199 |
0.61809 |
0.38191 |
0.236181 |
0.145729 |
11 |
322 |
0.618012 |
0.381988 |
0.236025 |
0.145963 |
12 |
521 |
0.618042 |
0.381958 |
0.236084 |
0.145873 |
13 |
843 |
0.618031 |
0.381969 |
0.236062 |
0.145907 |
14 |
1364 |
0.618035 |
0.381965 |
0.23607 |
0.145894 |
15 |
2207 |
0.618034 |
0.381966 |
0.236067 |
0.145899 |
16 |
3571 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
17 |
5778 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
18 |
9349 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
19 |
15127 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
20 |
24476 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
21 |
39603 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
22 |
64079 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
23 |
103682 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
24 |
167761 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
25 |
271443 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
26 |
439204 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
27 |
710647 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
28 |
1149851 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
29 |
1860498 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
30 |
3010349 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
31 |
4870847 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
32 |
7881196 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
33 |
12752043 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
34 |
20633239 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
or
n |
f(n) |
Ratio of every adjacent term |
Ratio of every second term |
Ratio of every third term |
Ratio of every fourth term |
0 |
1 |
|
|
|
|
1 |
4 |
0.25 |
|
|
|
2 |
5 |
0.8 |
0.2 |
|
|
3 |
9 |
0.555556 |
0.444444 |
0.111111 |
|
4 |
14 |
0.642857 |
0.357143 |
0.285714 |
0.071429 |
5 |
23 |
0.608696 |
0.391304 |
0.217391 |
0.173913 |
6 |
37 |
0.621622 |
0.378378 |
0.243243 |
0.135135 |
7 |
60 |
0.616667 |
0.383333 |
0.233333 |
0.15 |
8 |
97 |
0.618557 |
0.381443 |
0.237113 |
0.14433 |
9 |
157 |
0.617834 |
0.382166 |
0.235669 |
0.146497 |
10 |
254 |
0.61811 |
0.38189 |
0.23622 |
0.145669 |
11 |
411 |
0.618005 |
0.381995 |
0.23601 |
0.145985 |
12 |
665 |
0.618045 |
0.381955 |
0.23609 |
0.145865 |
13 |
1076 |
0.61803 |
0.38197 |
0.236059 |
0.145911 |
14 |
1741 |
0.618036 |
0.381964 |
0.236071 |
0.145893 |
15 |
2817 |
0.618033 |
0.381967 |
0.236067 |
0.1459 |
16 |
4558 |
0.618034 |
0.381966 |
0.236068 |
0.145897 |
17 |
7375 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
18 |
11933 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
19 |
19308 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
20 |
31241 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
21 |
50549 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
22 |
81790 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
23 |
132339 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
24 |
214129 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
25 |
346468 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
26 |
560597 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
27 |
907065 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
28 |
1467662 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
29 |
2374727 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
30 |
3842389 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
31 |
6217116 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
32 |
10059505 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
33 |
16276621 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
34 |
26336126 |
0.618034 |
0.381966 |
0.236068 |
0.145898 |
We
find that the limits of the ratios of the adjacent terms, second terms, third
terms, and fourth terms all remain the same as our original table.