Tamaiko Chappell

ASSIGNMENT 12

 

A spreadsheet can be used to estimate growth of a savings account after 30 years when the initial deposit is $1000 and it grows at 5.9% interest compounded monthly.


 

Year Account Balance
1 1060.62
2 1124.92
3 1193.11
4 1265.44
5 1342.15
6 1423.52
7 1509.82
8 1601.34
9 1698.42
10 1801.38
11 1910.58
12 2026.41
13 2149.25
14 2279.54
15 2417.73
16 2564.30
17 2719.76
18 2884.63
19 3059.50
20 3244.98
21 3441.69
22 3650.34
23 3871.62
24 4106.33
25 4355.27
26 4619.29
27 4899.32
28 5196.33
29 5511.34
30 5845.45

The following compound interest formula was used to determine the amounts at the end of each year:

The spreadsheet was able to calculate the amounts, A, given the values P = 1000, r = .059, n = 12, and t was assigned the values in the year column.


Suppose interest was compounded yearly at 12.5% using the same principal amount (r = .125, n = 1):

Year Account Balance
1 1125.00
2 1265.62
3 1423.83
4 1601.81
5 1802.03
6 2027.29
7 2280.70
8 2565.78
9 2886.51
10 3247.32
11 3653.24
12 4109.89
13 4623.63
14 5201.58
15 5851.78
16 6583.25
17 7406.16
18 8331.92
19 9373.42
20 10545.09
21 11863.23
22 13346.13
23 15014.40
24 16891.20
25 19002.60
26 21377.93
27 24050.17
28 27056.44
29 30438.49
30 34243.30

WOW!


Suppose in the original problem, the interest was compounded daily (n = 365):

Year Account Balance
1 1060.77
2 1125.23
3 1193.61
4 1266.15
5 1343.09
6 1424.71
7 1511.29
8 1603.14
9 1700.56
10 1803.90
11 1913.52
12 2029.81
13 2153.16
14 2284.01
15 2422.81
16 2570.04
17 2726.23
18 2891.90
19 3067.64
20 3254.06
21 3451.81
22 3661.58
23 3884.10
24 4120.13
25 4370.51
26 4636.11
27 4917.85
28 5216.71
29 5533.73
30 5870.01

 

 

 

RETURN TO HOME PAGE