Eudoxus Sequence


Eudoxus (408 B.C to 355 B.C) did not have a spreadsheet, but he investigated the sequence defined by

a(0) = 1, b(0) = 1

a(n) = a(n-1) + b(n-1)

b(n) = a(n) + a(n-1)

and consider the ratio of

Here is spreadsheet output for the first 15 values in these sequences.

1 1 1
2 3 1.5
5 7 1.4
12 17 1.41666666666667
29 41 1.41379310344828
70 99 1.41428571428571
169 239 1.41420118343195
408 577 1.41421568627451
985 1393 1.41421319796954
2378 3363 1.41421362489487
5741 8119 1.41421355164605
13860 19601 1.41421356421356
33461 47321 1.41421356205732
80782 114243 1.41421356242727
195025 275807 1.4142135623638

Prove: The ratio

has a limit as n gets large, and show that that limit is .


Hint

Make a spreadsheet to generate 20 to 30 terms of the sequences.

1. What happens when a(0) and b(0) are values other than 1?

2. Will it work for negative values?


Return to the EMAT 6600 Page