Situation 26: Absolute Value Equations Prepared at University of Georgia Center for Proficiency in Teaching Mathematics 6/28/05 – Kanita DuCloux

Edited at University of Georgia 6/21/06 -- Sarah Donaldson

Prompt

A student teacher begins a tenth-grade geometry lesson on solving absolute value equations by reviewing the meaning of absolute value with the class. They discussed one of the definitions of absolute value: that it represents a distance from zero on the number line and that the distance cannot be negative. He then asks the class what the absolute value tells you about the equation |x|=2. To which a student responds "anything coming out of it must be 2". The student teacher states "x is the distance of 2 from 0 on the number line". Then on the board, the student teacher writes

|x + 2| = 4 x + 2 = 4 and x + 2 = -4x = 2 x = -6

And graphs the solution on a number line. A puzzled student asks, "Why is it 4 and -4? How can you have -6? You said that you couldn't have a negative distance."

Commentary

In order to understand the concept of absolute value, a teacher must have a firm grasp of various definitions of it. Though not every definition must be mastered by the students, a teacher is better equipped to teach absolute value (or any concept, for that matter) the more thorough his/her own understanding is. Such mastery on the teacher's part will also help him/her address particular misunderstandings that students have about absolute value, such as the misunderstanding communicated in the questions of the student in this Prompt. The following foci address 4 different definitions of absolute value, and include various methods of solving the equation |x + 2| = 4.

Mathematical Foci

Mathematical Focus 1: Absolute value as distance from zero on a number line.

Absolute value can be defined as distance from zero on a number line. For example, |3| = 3 because 3 is 3 units away from zero, and |-2| = 2 because -2 is 2 units from zero.

|x| = 4 means that the distance from x to zero on a number line is 4. On the number line below, it can be seen that there are two points that are 4 units away from zero: 4 and -4.

In x + 2 = 4, x represents a number such that, when 2 is added to it, the result is 4. In |x + 2| = 4, x represents a number such that, when 2 is added to is, the result will be 4 units away from zero on a number line. When the points -6 and 2 are shifted 2 units to the right (ie 2 is added to each of them), the result is two points (-4 and 4) each lying 4 units away from zero. Therefore x = -6 and x = 2 are solutions to |x + 2| = 4.

There is an algebraic method to solve the equation |x + 2| = 4 using the definition of absolute value as distance from zero on a number line. Absolute value equations often yield more than one solution. In |x| = 4, for example, there are two values for x that make the equation true, 4 and -4, because both |4| and |-4| are 4. That is, both 4 and -4 are 4 units away from zero on a number line.

Expanding this notion to other absolute value equations, such as |x + 2| = 4, there will again be two possible solutions for x. To get these solutions, all possibilities for the value of (x + 2) must be listed:

x + 2 = 4	and	x + 2 = -4	
x = 2	and	<i>x</i> = -6.	

Each solution can be checked in the original equation to see that they make the equation true:

Does $ (2) + 2 = 4?$	Does $ (-6) + 2 = 4?$
4 = 4?	-4 = 4?
YES	YES

Mathematical Focus 2: Absolute value as a function

Absolute value can be defined as the function f(x) = |x| whose graph is:

It can be seen that the domain of the function is x = all real numbers, and the range is $y \ge 0$. Here is a visual representation of "absolute value is never negative." The y-value (range) is never negative (the function doesn't exist below the x-axis), but the x-value (domain) could be any real number, positive or negative. Using absolute value notation y = |x|, this idea of domain and range means that what is inside the absolute value symbols (x) **can** be negative while the absolute value itself (y) **cannot** be negative.

The graph of the absolute value function can be used to solve |x + 2| = 4 by examining the graphs of f(x) = |x + 2| and g(x) = 4 to see where they intersect. |x + 2| = 4 at the point of intersection of the two graphs:

The graphs intersect at x = -6 and x = 2, which means that x = -6 and x = 2 are solutions of the equation |x + 2| = 4.

Mathematical Focus 3: Absolute value of *x* defined separately for $x \ge 0$ and x < 0

A third definition of absolute value is: |x| = x if $x \ge 0$ -x if x < 0

Using this definition to solve the equation |x + 2| = 4, one would set up two equations:

$ x+2 = x+2$ if $x+2 \ge 0$	x+2 = -(x+2) if $x+2$ is < 0
4 = x + 2	4 = -(x + 2)
2 = x	4 = -x - 2
x = 2	6 = -x
	x = -6

So the solutions are x = 2 and x = -6.

Mathematical Focus 4: Absolute value of x as the positive square root of x^2

A fourth definition of absolute value is: $|x| = +\sqrt{x^2}$

This is the graph of the function $f(x) = \sqrt{x^2}$

Algebraically, this definition can be used to solve |x + 2| = 4,

$$|x + 2| = 4$$

+ $\sqrt{(x + 2)^2} = 4$
 $(x + 2)^2 = 16$
 $x^2 + 4x + 4 = 16$
 $x^2 + 4x - 12 = 0$
 $(x + 6)(x - 2) = 0$
 $x = -6, x = 2$

Mathematical Focus 5: Table of values

Make a table of various inputs (x-values) and outputs (|x + 2|) and see which inputs produce an output of 4.

x	x + 2
-7	(-7) + 2 = -5 = 5
-6	(-6) + 2 = -4 = 4
-5	(-5) + 2 = -3 = 3
-4	(-4) + 2 = -2 = 2
-3	(-3) + 2 = -1 = 1
-2	(-2) + 2 = 0 = 0
-1	(-1) + 2 = 1 = 1
0	(0) + 2 = 2 = 2
1	(1) + 2 = 3 = 3
2	(2) + 2 = 4 = 4
3	(3) + 2 = 5 = 5

The input values which result in an output of 4 are x = -6 and x = 2.