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Abstract

This paper describes a case study in mathematics instruction, focusing on the
development of mathematical understandings that took place in a tenth-grade geometry
class.  Two pictures of the instruction and its results emerged from the study.  On the one
hand, almost everything that took place in the classroom went as intended -- both in terms
of the curriculum and in terms of the quality of the instruction.  The class was well
managed and well taught, and the students did well on standard performance measures.
Seen from this perspective, the class was quite successful.  Yet from another perspective,
the class was an important and illustrative failure.  There were significant ways in which -
- from the mathematician's point of view -- having taken the course may have done the
students as much harm as good.  Despite gaining proficiency at certain kinds of
procedures, the students gained at best a fragmented sense of the subject matter and
understood few if any of the connections that tie together the procedures that they had
studied.  More importantly, the students developed perspectives regarding the nature of
mathematics that were not only inaccurate, but were likely to impede their acquisition
and use of other mathematical knowledge.  The implications of these findings for
research on teaching and learning are discussed.
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WHEN GOOD TEACHING LEADS TO BAD RESULTS:

THE DISASTERS OF "WELL TAUGHT" MATHEMATICS COURSES

Introduction and Overview

This paper reports the results of a year-long intensive study of the teaching and learning
that took place in a tenth-grade geometry class, which will be called the target class.  The
class took place during the 1983-84 academic year in a highly regarded suburban school
district in upstate New York.  The study included periodic observations of the target class
and of eleven other mathematics classes, interviews with students and teachers, and
questionnaire analyses of students' perspectives regarding the nature of mathematics.
The target class was observed at least once a week, and was videotaped periodically for
subsequent detailed analysis.  Two weeks of instruction near the end of the course,
dealing with locus and construction problems in geometry, were videotaped in their
entirety.  Our analyses focused both on the mathematics that was learned, and on what
the students learned about the mathematics -- including how and when they would use, or
fail to use, the mathematics that they had studied.

We begin with a brief discussion of the literature relevant to the work described in this
paper.  Due to space constraints, the discussion of the literature on teaching is extremely
telegraphic.  A major point, however, is that only a small portion of that literature is
directly relevant to the present study.  Most of the literature relegates the subject matter
being taught to the status of context variable and does not, therefore, discuss it in great
depth.  Subject matter understanding,  and the influence of classroom practice on the
development of that understanding, are the focus of this paper. In the literature section we
explore the difference between becoming competent at performing the symbolic
manipulation procedures in a mathematical domain and grasping the underlying
mathematical ideas in that domain.  Our discussion suggests that broader definitions of
mathematical understanding than "mastering symbol manipulation procedures" should be
used, and that there are dangers to the narrow assessments of competency that are
currently employed.

The paper then turns to a description of the main study.  Most of the discussion is
qualitative and interpretive, although some data from the questionnaire analyses are
given.  It is argued that, despite the fact that the class was well taught and that the
students did well on the relevant performance measure (the New York State Regents
examination), the students in the target class learned some inappropriate and
counterproductive conceptualizations of the nature of mathematics as a direct result of
their mathematics instruction. Detailed descriptions of the instructional origins of these
counterproductive notions are given.  Finally, some suggestions regarding directions for
subsequent research are considered.
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The Context: Brief Comments on the Teaching Literature and on Understanding
Mathematics

The past decade has seen a radical shift in theories of learning, brought about in large part
by progress in the cognitive sciences.  Through perhaps the mid-1970's, learning theories
were for the most part domain-independent.  Such theories attempted to characterize
general principles of learning, the specifics of which were hypothetically applicable in
different domains such as reading, social studies, and mathematics.  The details of the
subject matter were not important in such theories, for the most part playing the role of
"context variables" that (as the theory had it) could be taken into account in experimental
design.  The corresponding paradigms for investigating research on teaching are
described by Corno (this volume); see also Doyle (1978), Dunkin and Biddle (1974), and
Shulman (1985).  The first major paradigm described by Corno, process-product
research, largely used correlational methods to explore relationships between teacher
classroom behavior and student learning.  The classroom behaviors explored were for the
most part straightforward and easily quantifiable: e.g. time spent in questioning, "active
learning time," amount of praise, amount of feedback.  Other classroom variables
included type of ability grouping, whether students worked in small or large groups, and
so on.  Learning was operationally defined as performance on achievement tests -- tests
which, as we shall see below, may fail in significant ways to measure subject matter
understanding.

Mediating process research (see, e.g., Corno, this volume) provides a means of
overcoming some of the significant limitations of the process-product paradigm.  Such
work signals the beginning of a rapprochement  with cognitive science research on
learning, specifically with its focus on the child as active interpreter of its experience.
Doyle's study in this volume provides some compelling examples of the importance of
this perspective.  Doyle suggests that the presentation of subject matter as familiar work -
- routinized exercises that can be worked out of context, and without significant
understanding of the subject matter -- can trivialize that subject matter and deprive
students of the opportunity to understand and use what they have studied.  That
suggestion is explored at length in this paper.

Recent cognitive research on learning diverges from the domain-independent work
described above in that it lays a much greater emphasis on the particulars of the subject
matter being studied.  In elementary arithmetic, for example, Brown and Burton (1978)
developed a diagnostic test that could predict, about 50% of the time, the incorrect
answers that a particular student would obtain to a subtraction problem -- before the
student worked the problem!  The literature indicates that misconceptions in arithmetic,
in algebra, in physics, and other domains, are quite common and consistent (see, e.g.,
Helms & Novak, 1985.).  From this and related work follow two main consequences.
The first consequence is that one of the treasured pedagogical principles on which much
current instruction is based is, if not plain wrong, certainly inadequate.  The predominant
model of current instruction is based on what Romberg and Carpenter (1985) call the
absorbtion  theory of learning.  "The traditional classroom focuses on competition,
management, and group aptitudes; the mathematics taught is assumed to be a fixed body
of knowledge, and it is taught under the assumption that learners absorb what has been
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covered" (p. 26).  According to this view, the good teacher is the one who has ten
different ways to say the same thing; the student is sure to "get it" sooner or later.
However, the misconceptions literature indicates that the students may well have "gotten"
something else -- and that what the student has gotten may be resistant to change.
Dealing with this reality calls for a significantly different perspective on the part of the
teacher.  It also calls for different perspectives regarding the appropriate domain of study
of research on teaching, and different measures of competence.  The second consequence
is that one must look at the subject matter in detail.  Arithmetic mistakes differ from
misconceptions in algebra and physics, and from misapprehensions about reading; we
will understand each of these only by studying it on its own terms.  Thus studies of
learning and teaching in particular subject areas must be grounded in analyses of what it
means to understand the subject matter being taught.  It is to that kind of analysis, in
mathematics, that we now turn.  Some relevant research on mathematical cognition and
teaching may be found in Romberg and Carpenter (1985),  Leinhardt & Smith (1984),
Resnick (1983), Schoenfeld (1985), and Silver (1985).

The issue of classroom practice and its relation to students' understanding of
mathematical structure was one of the main themes of Wertheimer's (1959) Productive
Thinking, which provides our first two examples.  In the first, Wertheimer asked
elementary school students to solve problems like

274 + 274 + 274 or 812 + 812 + 812 + 812 + 812
                        3                                                                    5          

Many of the students, who were fluent in all four of the basic arithmetic operations,
solved such problems by laboriously adding the terms in the numerator and then
performing the indicated division.  By virtue of obtaining the correct answer, the students
indicated that they had mastered the procedures of the discipline.  However, they had
clearly not mastered the underlying substance; if you see repeated addition as equivalent
to multiplication and you see division as the inverse of multiplication (i.e., the
multiplication and division by the same number cancel each other out), there is no need to
calculate at all.  This example illustrates that  being able to perform the appropriate
algorithmic procedures, while important, does not necessarily indicate any depth of
understanding.  (We note here that  virtually all standardized testing for arithmetic
competency -- and, de facto, much standard instruction in arithmetic -- focuses primarily
if not exclusively on procedural mastery.)

Wertheimer's more famous example comes from his observations of classroom sessions
devoted the "the parallelogram problem," the problem of determining the area of a
parallelogram of base B and altitude H.  The students had been taught the standard
procedure, where cutting off and moving a specific triangle converts the parallelogram to
a rectangle whose area is easy to calculate.  They did quite well at the lesson, and they
were able to reproduce the argument in mathematically correct form.  But when
Wertheimer asked the students to find the area of a parallelogram in non-standard
position, or to find the area of a parallelogram-like figure to which the same argument
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applied, the students were stymied.  Wertheimer argues that although they had
memorized the proof, they had failed to understand the reason that it worked; although
they had memorized the formula, they used it without deep understanding.  With that
understanding, he argues, the students would have been able to answer his questions
without difficulty; without it they could solve certain well specified exercises but in
reality had acquired only the superficial appearance of competence.  (We note again that
typical achievement tests, which examine students' ability to reproduce the standard
arguments, are unlikely to examine the kinds of understandings Wertheimer considers
fundamental.)

There are numerous contemporary parallels to these examples.  For example, word
problems of the following type are a major focus of the elementary mathematics
curriculum:  "John has 8 apples.  He gives 5 apples to Mary.  How many apples does
John have left?"  Perhaps the most commonly used instructional procedure to help
students solve such problems is the "key word procedure," which is used as follows.  The
student is told that certain words in problem statements provide the "key" to selecting
which arithmetic operation to employ. For example,  the key word in the problem just
quoted is left, which indicates subtraction.  One can "solve" the problem by identifying
the two numbers in the problem statement, and then -- since the key word is "left" --
subtracting one from the other.  Note that one can do so without even reading the whole
problem, and without understanding the situation it describes.  Research indicates that
many students work the problems in precisely that fashion.  In interviews some students
revealed that they circled the numbers in the problem statement and then read the
problem statement from the last word backwards, because the key word usually appears
near the end of the problem!   Thus the key word procedure, initially introduced to help
students make sense of word problems, had (at least in these cases) precisely the opposite
effects.  It allowed students to obtain the right answers without understanding -- and gave
them the option of not seeking understanding at all.  Worse, it may have suggested to
them that understanding is not necessary when solving mathematics problems; one
simply follows the procedure, whether it makes sense or not.

The most extensive documentation of students' performance on word problems, without
understanding, comes from the third National Assessment of Educational Progress
(Carpenter, Lindquist, Matthews, and Silver, 1983).  On the NAEP mathematics exam,
which used a stratified national sample of 45,000 students, 13-year-olds were given the
following problem:  "An army bus holds 36 soldiers.  If 1128 soldier are being bussed to
their training site, how many buses are needed?" Seventy percent of the students who
worked the problem performed the long division algorithm correctly.  However, 29% of
the students wrote that the number of buses needed is "31 remainder 12" and another
18% wrote that the number of buses needed is 31.  Only 23% gave the correct answer.
Thus fewer than one-third of the students who selected and carried out the appropriate
algorithm produced the right answer -- a step that required a trivial analysis of the
meaning of the problem statement.  There are a number of plausible explanations for this
behavior, one of which will be suggested in the case study below (See also Silver, in
press, for a discussion of related problems.).  But data of this type document an almost
universal phenomenon: Students who are capable of performing symbolic operations in a
classroom context, demonstrating "mastery" of certain subject matter, often fail to map
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the results of the symbolic operations they have performed to the systems that have been
described symbolically.  That they fail to connect their formal symbol manipulation
procedures with the "real world" objects represented by the symbols constitutes a
dramatic failure of instruction.

A set of similar phenomena motivated the present study.  Since 1979  I have conducted a
series of studies exploring students' understandings of geometry.  Those studies have
focused, in particular, on the relationship between geometric proofs and geometric
constructions.  To sum things up briefly, I had found that high school and college
students who had taken a full year of high school geometry -- which focuses on proving
theorems about geometric objects -- uniformly approached geometric construction
problems as empiricists.  They engaged in empirical guess-and-test loops, completely
ignoring their proof-related knowledge.  In one series of interviews, for example, college
students were asked to work two related problems.  The first was a proof problem.
Solving this problem directly provided the answer to the second, a construction problem
(The second problem asked how to construct a circle whose properties had been
completely determined in the first.).  Yet, after solving the first problem, nearly a third of
the students began the second problem by making conjectures that flatly violated the
results they had just proved!

Such behavior indicated that these students saw little or no connection between their
"proof knowledge," abstract mathematical knowledge about geometric figures obtained
by formal deductive means, and their "construction knowledge," procedures and
information they had mastered in the very same class for working straightedge and
compass construction problems.  I make this statement more provocatively as Belief 1,
below; some other typical beliefs are also given.  I conjecture students may develop these
beliefs as a result of their experiences with mathematics. (Extended discussions of the
students' beliefs may be found in chapters 5 and 10 of my (1985) Mathematical Problem
Solving.  A discussion of the "ideal" relationship between geometric empiricism and
deduction may be found in Schoenfeld, in press.)

Belief 1:  The processes of formal mathematics (e.g. "proof") have little or nothing
to do with discovery or invention.  Corollary: Students fail to use information from
formal mathematics when they are in "problem solving mode."

Belief 2:  Students who understand the subject matter can solve assigned
mathematics problems in five minutes or less.  Corollary: Students stop working on
a problem after just a few minutes since, if they haven't solved it, they didn't
understand the material (and therefore will not solve it.)

Belief 3:  Only geniuses are capable of discovering, creating, or really
understanding  mathematics.  Corollary: Mathematics is studied passively, with
students accepting what is passed down "from above" without the expectation that
they can make sense of it for themselves.

In listing these beliefs we note the parallel to research Doyle describes in this volume.
Doyle described a student who took a teacher's instructions for an assignment as a recipe
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for completing the task, rather than a way of learning the material.  In terms more
provocative than Doyle might like, one can characterize that student's perspective as
follows:

Belief 4:  One succeeds in school by performing the tasks, to the letter, as described
by the teacher.  Corollary: learning is an incidental by-product to "getting the work
done."

The purpose of the study reported below was to explore the presence and robustness of
such beliefs, and to seek their possible origins in mathematics instruction.

The Instructional Roots of Students' Views of Mathematics

At the beginning of the school year the teacher of the target class issued an open
invitation.  My assistants and I were welcome to visit any of his classes, any time,
without prior notice.  We were free to videotape any of the classes for later analysis, and
interview any of his students if mutually convenient times could be arranged. One class
was chosen, and it was observed once or more a week for the entire year.  Two weeks of
instruction, focusing on locus and construction problems, were videotaped and analyzed
in detail.  An 80-item questionnaire was filled out by the twenty students in the target
class.  It was also completed by 210 other students in eleven other classes.  Those classes
were also observed periodically, to determine whether the students and instruction in the
target class could be considered typical.

Both the teacher and the students would be ranked well according to any of the measures
typically employed in classroom research.  To begin with a performance measure, the
class scored in the top 15% on the New York State Regents geometry examination, a
state-wide uniform examination given for the course.  The class was well run.  Early in
the term the teacher established the rules of protocol for classroom interactions, and they
were adhered to throughout the term.  The relationship between teacher and students was
cordial and respectful, and discipline was never a problem in class.  Control was
maintained in a low-key manner, with humor.  Straight lecture was kept to a minimum.
The vast majority of classes focused on working problems, with students presenting their
solutions at the board.  Such discussions were usually "Socratic," with the teacher leading
the student to the correct answer if he or she had not obtained it.  Questions were invited,
and reliable feedback was given.  During such sessions the students were attentive; the
class would do well on standard measures such as "time on task."

A classroom observer unfamiliar with mathematics would necessarily give the class high
marks.  The teacher followed the curriculum and ran the class well, and the students
scored well on standardized examinations.  Even so, some very unhealthy things took
place in the course.  In particular, there is strong reason to believe that, as a direct result
of their experience in the course, the students developed (or, at least, were reinforced in)
the kinds of beliefs described in the previous section.  In the sequel four aspects of the
classroom interactions, and their results, are described.  The first is described at some
length, the others more briefly.
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First Result: Students learn to separate the worlds of deductive and constructive
Geometry.

The subject matter covered in the course was prescribed by the Math 10 Regents
curriculum, and the curriculum was followed quite closely.   Despite the amount of
freedom hypothetically allowed to them, most teachers stick pretty close to the textbook
(Romberg and Carpenter, 1985).  In New York, strict adherence to the curriculum was
even more likely  because of the state-wide Regents exam.  Performance on the Regents
examination is the primary measure of both teacher and student success in almost all New
York school districts.  The primary goal of instruction, therefore, was to have students do
well on the exam.  The curriculum and the examinations were well established and quite
consistent from year to year.  Thus the amount of attention to give to each topic, and the
way to teach it (for "mastery" as measured by the exams), were essentially prescribed.

The curriculum contained a dozen "required" proofs, one of which appeared on the
Regents exam and was worth 10 points (of 100).  An example of a required proof, written
in the standard two-column format, is given in Fig. 1.  Many other problems on the exam
called for proof skills.  Proof was thus central to the curriculum, and it received great
emphasis.  In contrast constructions were not, and did not.  One "required" construction,
worth only  two points, appeared on the end-of-year exam.    A typical construction
problem, with a correct solution, is given in Figure 2.  What the exam required, in fact,
was that the student perform the construction accurately.  No explanations were asked
for; the student received full credit for producing the right sequence of arcs on the page
with a reasonable degree of precision.  Developing this ability was the focus of classroom
instruction.

----------------------------------------
Insert Figures 1 and 2 Here

----------------------------------------

In the unit on constructions -- taught, incidentally, near the end of the school year so the
students would not have time to forget their recently acquired skills before the Regents
exam -- the training the students received was geared toward the mastery of a physical
rather than an intellectual skill.  (The "bottom line" was quite clear: if the construction
was inaccurate although correct, the student did not receive credit.) The reliance on
empirical standards was made clear at the beginning of the unit.  The students had been
told to bring their construction tools (straightedge and compass) to class.  Those who
arrived in class without them were sent to their lockers to pick them up, and a discussion
of constructions did not begin until all of the students had the tools in hand.  From the
very beginning, the constructions were taught as a step-by-step procedure to be
memorized.   For example, here is the beginning of the teacher's presentation of a new
construction, to copy an angle.

“Construction number 2 is [the following]:  Given an angle, to construct and angle
equal, or congruent, to that angle.
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Step number 1, choose any point on your work line. That's going to be the vertex of
your new angle. Step number 2, you mark an arc on the given angle with the point of
the compass on the vertex formed by the two intersecting lines. Step number 3, move
over to the work line, and without changing the compass setting, make an arc with the
point of the compass at the point that's going to be the vertex of your new angle...”

This introduction set the tone for the classroom discussions of constructions.  Most of the
time the teacher introduced a construction and demonstrated it at the blackboard.  As he
demonstrated the steps involved, the students carefully copied the constructions into their
notebooks.  When students demonstrated their solutions to homework problems at the
board, the other students carefully copied the constructions into their notebooks.
Approximately ninety percent of classroom time during the unit on constructions was
spent with straightedge and compass in hand, practicing the constructions.

The first day of the unit the students were quite slow at the constructions.  The teacher
told them that they would have to get faster, but that they would not find it difficult:
"Mainly with constructions it is all going home and practicing."  The idea that practice is
essential, and that the students should have the constructions committed to memory,  was
repeated throughout the unit. The message to the students was quite clear, as indicated by
a comment the teacher made just before a test: "You'll have to know all your
constructions cold....  This is where practice at home comes in."

Another indication of the empirical focus during the unit on constructions came at the
beginning of a class period.  The class started in typical fashion.  The teacher sent six
students to the board, to present their solutions to homework problems.  He then realized
that there was a problem:  "I forgot we're doing constructions.  For constructions we use a
straightedge and compass, and I only have one compass." He sent five of the students
back to their seats, and had the first student demonstrate her construction at the board
with the appropriate tools.  The rest then followed, one at a time, each student working
his or her construction at the blackboard with exquisite care.  The students in their seats
copied the construction into their notebooks with comparable care.  This session took
twenty minutes, with the exclusive focus being on the accuracy of the constructions.

This may seem to be a minor matter, but it is not.  All six of the students could have
sketched their answers to the problems at the beginning of class; when called upon, they
could have discussed why their constructions were right.  Such a discussion could have
focused on understanding, and helped to link the formal mathematics with the empirical
and constructive aspects of it.  Instead, the discussion focused on carefully performing
the sequence of steps that constituted the constructions.  The "message" the students got
is that accuracy is what counts.  The did not get to see the overt linkage of the
construction unit with the subject matter they had studied for most of the term.

The goals of instruction were accuracy and speed, and understanding was sacrificed (not
intentionally!) in the process.  Class time was spent almost exclusively in practicing the
sequence of steps required to complete a construction.  Did a construction have to be
accurate? "Just line up your points. That's the important thing."  What standards of
accuracy would be used to grade constructions on a test?  "As long as I can see all the
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marks so that I can follow your construction, and the construction is correct, then I will
not take off if it's just off by a minimal distance... But more than that and I will take off,
yes."

The whole tenor of the course led students to rely on empirical standards for the
correctness of a construction.  The strongest example of  such emphasis, to the exclusion
of the formal mathematics that guarantees  the correct answer,  came when the teacher
presented a quick trick for distinguishing between the constructions that yield the
inscribed and circumscribed circles of a given triangle.  In the class there was no
discussion whatsoever of why each of the constructions worked.  Rather, the teacher told
the students that they would have trouble remembering which constructions uses angle
bisectors and which uses perpendicular bisectors.  The following method, he suggested,
would help them decide.  They should draw a scalene triangle and sketch in its angle
bisectors.  They could then check the lengths from the point of intersection to the three
vertices.  Those segments would have to be equal for the circumscribed circle.  But in the
sketch it will be obvious that those lines are not equal.  That resolves the issue: the
bisectors must yield the inscribed circle, since they don't yield the circumscribed circle.
Of course, if the students  don't remember and choose the wrong construction "It will be
obvious to you right away if you made a mistake because that circle is going to come out
either way inside or way outside."  Here too, the message was that accuracy is the final
arbiter of correctness.(See pp. 361-367 of Schoenfeld, 1985, for details.)

With the stress on accuracy as described above, the students learned to rely exclusively
on empirical standards to assess the correctness of their construction attempts.  They
accepted the "bottom line" of the evaluation scheme and came to believe that a
construction is right only if it is cleanly carried out and produces results that are
empirically correct (i.e. within the bounds of error considered acceptable for the tools one
has for performing the construction).

Returning to the statement of Belief 1, what if anything -- from the student's point of
view -- does mathematical argumentation, or proof, have to do with constructions?  In
brief, virtually nothing.  In these students' experience, proofs had always served as
confirmation of information that someone (usually the teacher or mathematicians at
large) already knew to be true; they provided the "justifications" for constructions.  But
ask these students to discover a construction, and they do not see that any proof
arguments are relevant at all.  For these students, a construction is right when it "works."
They are in "discovery mode," and proofs have never helped them to discover.
Confronted with a construction problem they make their best guess, and then test it by
trying  it out and seeing if their attempt meets their empirical standards.  Such behavior
was learned, alas, as an unintended byproduct of their instruction.

Second Result: Students perceive that the form of a mathematical answer is what
counts.

For mathematicians, a "proof" is a coherent chain of argumentation in which one or more
conclusions are deduced, in accord with certain well specified rules of deduction, from
two sets of "givens:" (1) a set of hypotheses, and (2) a set of "accepted facts" consisting
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of either axioms or results that are known to have been proven true.  Save for certain
domain-specific constraints (e.g. formal proofs in certain branches of logic that follow
rigidly prescribed formats), there is a great deal of flexibility in the way a proof argument
can be written.  Put simply, what matters to the mathematical community is the
argument's coherence and correctness.  Consider, for example, the following proof that
the base angles of an isosceles triangle are equal.

Consider a triangle ABC, where AB=AC, as in the diagram at the top of Figure 1.
Draw the median AD to the midpoint D of side BC.  Since AB=AC, AD equals
itself, and BD=DC, the triangles ABD and ACD are congruent.  Hence the
corresponding angles ABD and ACD are equal.

Most mathematicians would consider this argument to be a fully adequate and
appropriate proof of the desired result.  In the vast majority of high school geometry
classrooms across the country, however, that argument would not be accepted as either
adequate or appropriate.  In most 10th grade geometry classes there is a strict protocol for
writing proofs, and  students are expected to follow the protocol closely.  One begins by
stating the problem at the top of the page, listing what is given and what is to be proved.
One then draws a large "T," which divides the space below the problem statement into
two columns.  The  column on the left is labeled "Statements," and the column on the
right is labeled "Reasons."  In the left-hand column one writes a series of statements,
beginning with the "givens" from the problem statement.  These statements are numbered
in order, with only one statement per line.  Each statement must be justified separately.
The right-hand column contains the justifications, which are numbered to correspond to
the statements.  The last entry on the list of statements, of course, is the result to be
proved.  Figure 1, discussed above, gives a "correct" version of the proof.

The two-column format is a matter of convention.  In its defense, there are arguments in
favor of that convention: for example, an organized format may help students to be
orderly and to keep track of their arguments.  (There are also arguments that the rigidity
of format obscures the thought processes that provide good mathematical arguments, and
that alternate formats are superior; see, e.g., Anderson, Boyle, Franklin, & Reiser, 1985.)
Either way, however, there is nothing sacred about the form; it is simply an agreed-upon
means of communication.  In many high school classrooms, however, it has taken on
nearly sacred status.  In most classes -- in particular, in all of the classes we observed,
including the target class -- and on the New York State Regents exam, arguments must be
expressed in that form.  In instruction, and on the examinations, substantial partial credit
is deducted for deviations from the proper form.

The use of such a form for proof strikes most students as being arbitrary and capricious.
The teacher usually overcomes this initial resistance, but at the cost of a significant
amount of time and effort.  At the beginning of the term the form is presented as
something that must be used, something that the students will simply have to get
accustomed to.  When students put their homework on the board during the first few
weeks of the unit on proofs, a tremendous amount of time is spent correcting the form of
the students' answers.  There are discussions of completeness ("Do we really have to list
the givens? After all, they appear in the problem statement." Answer: yes.).  There are
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discussions of format ("If more than one statement has the same reason, can't we write
them on the same line?" Answer: No.). And there are discussions of acceptable
abbreviations ("Do we have to write out the whole statement about corresponding parts of
congruent triangles?" Answer: No, you can use CPCT.).  A great deal of  class time is
spent in the consideration of what is legitimate and acceptable.  In one of our videotapes,
for example, 22 of the 37 minutes spent discussing the students' blackboard work was
spent in discussions of form rather than on the correctness of the students' work.

The focus on form decreased as the students mastered it, but by that time the emphasis
has had its effect.  In a number of our videotapes of high school and college students, the
students solved a proof problem in two or three minutes.  They then made comments like
"All right, now let's do it properly" and spent as long as ten to fifteen minutes making
sure that the argument was written in correct form, with all of the proper abbreviations.
As a result of their instruction these students came to believe that it is the form of
expression, as much as the substance of the mathematics, that is important.  That was not
a good lesson for them to have learned.

Third Result: Students come to believe that all problems can be solved in just a few
minutes.

The structure of homework assignments and of test problems in the target class was
essentially identical to the structure of homework assignments and test problems in the
other classes we observed.  This structure, in turn, was essentially the same (making
allowances for students' age) throughout the whole school system.  Over the period of a
full school year, none of the students in any of the dozen classes we observed worked
mathematical tasks that could seriously be called problems.  What the students worked
were exercises: tasks designed to indicate mastery of relatively small chunks of subject
matter, and to be completed in a short amount of time.  In a typical five-day sequence, for
example, students were given homework assignments that consisted of 28, 45, 18, 27, and
30 "problems" respectively.  (A typical problem was as follows.  The students had
learned the following construction: given a point and a line, to construct a line passing
through the given point that is parallel to the given line.  The problem: given a triangle
and a point marked on one side of the triangle, to construct a line passing through the
given point that is parallel to the base of the triangle.  Solving this problem calls only for
recognizing that it is identical to the known construction, and applying the same
procedure.)  The teacher's practice was to have students present solutions to as many of
the homework problems as possible at the board.  Given the length of his assignments,
that means that he expected the students to be able to work twenty or more "problems" in
a fifty-four minute class period.  Indeed, the unit test on locus and construction problems
(a uniform exam in Math 10 classes at the school) contained twenty-five problems --
giving students an average two minutes and ten seconds to work each problem.  The
teacher's advice to the students summed things up in a nutshell:  "You'll have to know all
your constructions cold so you don't spend a lot of time thinking about them." [emphasis
added.]

More time was spent on proof problems of course, but even those were expected to be
worked with dispatch: ten or fifteen minutes was as long as a student was expected to
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spend on any problem.  Once again, we note that this behavior was not a local aberration.
The New York State Regents exam, a three-hour-long exam, contains on average some
thirty to forty questions (including proof questions).   New York is neither alone nor
atypical in this regard.  As a standard of reference one may consider standardized tests of
any sort, such as SAT's or the College Board examinations.

In sum, students who have finished a full twelve years of mathematics have worked
thousands upon thousands of  "problems" -- virtually none of which were expected to
take the students more than a few minutes to complete.  The presumption underlying the
assignments was as follows:  If you understand the material, you can work the exercises.
If you can't work the exercises within a reasonable amount of time, then you don't
understand the material.  That's a sign that you should seek help.

Whether or not the message is intended, students get it.  One of the open-ended items on
our questionnaire, administered to students in twelve high school mathematics classes in
grades 9 through 12, read as follows: "If you understand the material, how long should it
take to answer a typical homework problem?  What is a reasonable amount of time to
work on a problem before you know it's impossible?"   Means for the two parts of the
question were 2.2 minutes (n=221) and 11.7 minutes (n = 227), respectively. (The two
different values of n arose because of a small number of non-quantitative responses like
"a few.")

I do not wish to suggest that all mathematics problems should be long, time-consuming
blockbusters. There is a role for both exercises and exploratory problems.  Students must
learn basic facts and procedures of course, but it is also essential for them to engage in
real mathematical thinking -- in trying to make progress on difficult problems, in
engaging in the give-and-take of making sense of complex situations, in learning that
some problems take time, hard work, and a bit of luck to solve.  We have done a serious
disservice to any student who emerges from the classroom thinking that mathematics
only applies to situations that can be solved in just a few minutes -- and that if you can't
solve a problem in a short amount of time, you should simply give up.

Fourth Result: Students view themselves as passive consumers of others'
mathematics.

One of the most vivid memories of my education comes from an upper division
probability class, when my instructor was about to introduce the binomial theorem.  She
stopped writing the statement of theorem at the point where she needed to write the
formula.  "I never remember this formula," she said, " but it's so easy to derive that you
don't need it anyway."  Then she showed us how to derive the formula.  What she showed
us made sense.  To this day I can't remember the formula, but I can derive it, either when
I need it (which is rare) or because the thought of it brings back pleasant memories.  The
idea that was brought home in that class -- that mathematics really makes sense, and that
you can figure something out if you need to -- was exhilarating.  It is (or should be) part
of the pleasure of learning mathematics.

Such moments were rare in my experience as a student, and they were almost completely
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absent from the classes we observed.  The mathematics instruction that we observed
consisted almost exclusively of training in skill acquisition.  For each of the years K-12
(and beyond; calculus instruction in college is pretty much the same), there was an
agreed-upon body of knowledge, consisting of facts and procedures, that comprised the
curriculum.  In each course, the task of the teacher was to get students to master the
curriculum.  That meant that subject matter was presented, explained, and rehearsed;
students practiced it until they got it (if they were lucky).  There was little sense of
exploration, or of the possibility that the students could make sense of the mathematics
for themselves.  Instead, the students were presented the material in bite-sized pieces so
that it would be easy for them to master.  As an example, recall the step-by-step
procedure for constructions, described above, that was used by the teacher of the target
class.  Constructions were introduced that way, and students were given practice that
way.  When, for example,  a student had difficulty with a particular problem, the teacher
reminded him that the problem called for a construction with which the student was
familiar.  He then asked: "In your construction, what is step number one?"  The student
replied correctly.  The teacher continued.  "Good.  In your construction, what is step
number two?"  And so on.  In this way, students got the clear impression that someone
else's mathematics was theirs to memorize and spit back.  Nor was step-by-step
memorization limited to constructions. Recall that the Regents exam had required proofs
as well; students were told to commit them to memory.  This was standard practice, and
was promoted as being both efficient and desirable.   For example, an advertisement for a
best-selling series of review books for the Regents exams proudly announced: "Students
like these books because they offer step-by-step solutions."

The point I wish to stress here is that students develop their understanding of the
mathematics from their classroom experience with it.  If the "bottom line" is error-free
and mechanical performance, students come to believe that that is what mathematics is all
about.   In the target class, for example, the teacher talked about how important it was for
students to think about the mathematics, and to understand it.  He pointed out the fact that
they should not memorize blindly, because if they did "and forgot a step" they would be
in trouble.  In truth, however, this rhetoric -- in which the teacher honestly believed --
was contradicted by what took place in his classroom.  The classroom structure provided
reinforcement for memorization, and the reward structure promoted it.  One of the items
on our questionnaire, for example, asked students to agree or disagree with the statement
"the math that I learn in school is mostly facts and procedures that have to be
memorized."  With a score of 1 indicating "very true" and a score of 4 indicating "not at
all true," this item received an average score of 1.75 -- the third strongest "agree rating"
of seventy questions.  Yet the statement "When I do a geometry proof I get a better
understanding of mathematical thinking" received an average score of 1.99 -- again very
strong agreement.  These data parallel the NAEP secondary school data, where students
claimed that mathematics is mostly memorization but that mathematics helps a person to
think logically.  Our classroom observations supported Carpenter et al.'s (1983, p. 657)
conjecture that the "latter attitudes may reflect the beliefs of their teachers or a more
general view rather than emerge from their own experience with mathematics."  More
importantly, the latter attitudes did not influence behavior: when working mathematics
problems, the students behaved in accord with the three mathematics beliefs discussed
above.
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Discussion

The preceding section is not intended in any way as an indictment of the teacher of the
target class.  The teacher did his job -- as the system defines it -- effectively.  While one
could find aspects of his teaching to criticize (he might have provided better motivation
for some of the units, for example), these complaints would be minor.  The class was
efficiently managed, there was mutual respect between him and his students, and the
students learned what they were supposed to (as measured by the Regents exam).  The
teacher was not considered a "star," but he was well enough regarded by his colleagues.

In short, what we observed was typical, if not better than average, instruction -- with
typical results.  Our observations of other mathematics classes, grades 9 through 12,
showed little variation in substance from class to class; the questionnaire responses from
the target class regarding attitudes toward mathematics were similar to those for the
eleven other classes, and similar to the pattern of responses on the NAEP exam.  Our
discussion has been of a geometry courses, and has focused on some results particular to
geometry.  However, it should be stressed that our results apply across the boards to
mathematics instruction; geometry is just a case in point.  The illustrations in the
literature review -- Wertheimer's complaints about students' lack of understanding of the
four basic operations despite their ability to perform them and his discussion of
parallelogram problem, the abuses of the key word procedure and students' nonsense
answers to word problems on the NAEP exams -- all serve as indicators that the problems
discussed here are widespread, and that they permeate the curriculum at all levels.
Indeed, the NAEP reports suggests that we should not take much solace in students'
slightly improved abilities at rote computational problems:

[S]tudents may not understand some of the problems they do solve.  Most of the
routine problems can be mechanically solved by applying a routine computational
algorithm.  In such problems the students may have no need to understand the
problem situation, why the particular computation is appropriate, or whether the
answer is reasonable... The errors made on several of the problems indicate that
students generally try to use all of the numbers given in a problem statement in their
calculation, without regard for the relationship of either the given numbers or the
resulting answers to the problem situation. (Carpenter et al., 1983, p. 656)

I believe that the issues raised in this paper are general, and that the causes of the
behavior discussed here are systemic.  Mathematics curricula have been chopped into
small pieces, which focus on the mastery of algorithmic procedures as isolated skills.
Most textbooks present "problems" that can be solved without thinking about the
underlying mathematics, but by blindly applying the procedures that have just been
studied.  Indeed, typical classroom instruction (recall the "key word" procedure) subverts
understanding even further by providing methods for solving problems that allow
students to answer problems correctly, without making an attempt to understand them.
Good teaching practice can compensate for the inadequacies of the texts, of course. There
is evidence to suggest, however, that it does not.  In reviewing a series of case studies on
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mathematics instruction, Romberg and Carpenter (1985) note that the textbook was
consistently seen as "the authority on knowledge and the guide to learning [and that]...
many teachers see their job as 'covering the text.'  Further, it was also noted that
mathematics and science were seldom 'taught as scientific inquiry -- all subjects were
presented as what experts had found to be true.'  Ownership of mathematics rests with the
textbook authors and not with the classroom teacher" (p. 25).

Other than texts, the major force that drives the curriculum is testing.  In New York, the
Regents exams dominate instruction at all levels; students and their teachers are judged
by classroom performance on the examinations.  Around the country, school district
administrators are coming to rely more on achievement tests as measures of their
teachers' classroom performance.  Unfortunately, virtually all standardized examinations
are insensitive to the kinds of issues discussed in this paper.  [The busing question cited
from the NAEP exam is atypical.  Indeed, one highly respected mathematics educator
complained to me that such questions are unfair. After all, he said, such problems were
not in the curriculum, so one would not expect students to do well on them.  With all due
respect, I reject this as an outrageous assertion.  When 29% of our students indicate that
the number of buses required for a particular task is "31 remainder 12," something has
gone very, very wrong.]

It is quite reasonable to expect teachers to rely on the text materials they have at hand,
and to emphasize the skills on which the students (and they!) will ultimately be judged --
most often the isolated, mechanical, algorithmic procedures on which the examinations
focus.  One notes that until quite recently the literature on teaching research has not been
terribly helpful in this regard: in general the process-product paradigm and mediating
process research have used achievement tests (or similarly constructed measures) as their
measures of instructional "success."  A much broader view of mathematics, of curricular
goals, and of what students really learn in their instruction, is needed in order to
conceptualize and effect change.  In this final discussion I shall make some basic
assumptions regarding the nature of mathematics and the nature of humans as learners.
These, in turn, suggest some directions for research and practice.

My first assumption is simple, though perhaps not uncontroversial:  (1) a major purpose
of mathematics instruction is to help students learn to think mathematically.  To
elaborate, my assumptions about mathematics are as follows: (2) even at the most
elementary levels, mathematics is a complex and highly structured subject;  (3) thinking
mathematically consists not only of mastering various facts and procedures, but also in
understanding connections among them;  and (4) thinking mathematically also consists of
being able to apply one's formal mathematical knowledge flexibly and meaningfully in
situations for which the mathematics is appropriate.  Finally, I make some (basically
constructivist) assumptions about humans as learners: (5) students are active interpreters
of the world around them, constantly building interpretive frameworks to make sense of
their experiences; and (6) those interpretive frameworks shape the ways that students see
the world and act in it -- in particular, how they see and use their mathematical
knowledge.

If one takes them seriously, the first four assumptions regarding the nature of
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mathematical thinking call for a re-examination of curricular goals, materials, and
measurement tools.  On the one hand, it is pretty clear what mathematical thinking is not:
the rote memorization of facts and procedures as often practiced in our classrooms, and
as reified by current texts and examinations.  Defining the appropriate replacements will
be no easy task, however.  In essence, assumptions 2 through 4 serve as a major items in
a research agenda.  It is incumbent upon the research community to provide detailed
elaborations of the nature of mathematical thinking -- to characterize the knowledge and
cognitive processes that comprise thinking mathematically, and to describe the cognitive
structures that support such thinking.  Recent work in cognitive science has begun to take
some steps in that direction, but we are still very much in the early stages of such work --
research which will require grounding in both mathematics and psychology, and thus the
collaboration of mathematicians and cognitive scientists.

Similarly, assumptions 5 and 6 serve to frame another large task in that research agenda -
- that of understanding the world from the student's point of view, and developing means
of characterizing the effects of instruction on the ways that students' mathematical world
views develop.  My choice of words may seem extremely broad, but the choice is is
deliberate.  As Doyle's work (this volume) indicates, students learn various lessons from
their instruction -- e.g. that If the lesson learned is that one does tasks to satisfy the
teacher, and that the "design specs" of the task (how to get it done) are what count, then
the student may not learn much about the subject matter.  All of the examples in this
paper are similar in kind.  What the students in the target class learned about geometry
extended far beyond their mastery of proof and construction procedures.  They developed
perspectives on the role of each, which in turn determined which knowledge they used --
or failed to use.  Similarly, their views about mathematical form, "problems," and their
role as passive consumers of others' mathematics, all shape their mathematical behavior.
The other literature examples indicate that the same holds true in all mathematics
instruction.

In sum, research on the psychology of teaching and learning needs to be expanded both in
scope and in breadth.  "Learning outcomes" must be broadly defined if we are to provide
adequate characterizations of behaviors such as those described in the previous
paragraph.  But explorations of learning also need to become more focused and detailed
as we begin to elaborate on what it means to think mathematically.   It is also essential --
both for research purposes and because measurement is the "bottom line" for much real
world instruction -- for our efforts to include the development of measures that will
adequately characterize this expanded notion of mathematics learning.  And if we really
intend to affect practice, we will need to become deeply involved in the development and
testing of instructional materials.

This list of tasks may seem daunting, but it is not beyond our reach.  There is, as noted
above, an increasing rapprochement  between researchers on teaching and cognitive
scientists.  Similarly, there are closer ties between psychologists of learning and subject
matter experts as the result of perceived need for collaborative efforts.  As our sense of
the task grows, so does our capacity to deal with it.
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