Becky Dragan

Assignment 12

The Spreadsheet in Mathematics Explorations


The spreadsheet can be used for many different things. In this assignment, I will explore how EXCEL can be used to graph any function y = f(x).

Let's look at a graph of y = x^2 + x + 1 for x=-15 to 15. In EXCEL the x-values can be entered into the first column of cells and the y-values in the second column. The function can then be graphed and would look as follows.

 

Other functions such as cosine and sine can be graphed as well. A graph of y = cos(0.5x) would look as follows.

The spreadsheet can also be used to examine Fibonnaci sequence. The first column contains the Fibonnaci numbers using f(0)=1, f(1)=1, f(n)=f(n-1)+f(n-2). The second column is the ratio of each adjacent pair of terms in the Fibonnaci sequence. The third column is the ratio of every second term, the fourth column is the ratio of every third term, and the fifth column is the ratio of every fourth term. What do you notice about these ratios? Can you predict what would happen if you took the ratio of every fifth term?

 

1
1 1
2 0.5 0.5
3 0.666666666666667 0.333333333333333 0.333333333333333
5 0.6 0.4 0.2 0.2
8 0.625 0.375 0.25 0.125
13 0.615384615384615 0.384615384615385 0.230769230769231 0.153846153846154
21 0.619047619047619 0.380952380952381 0.238095238095238 0.142857142857143
34 0.617647058823529 0.382352941176471 0.235294117647059 0.147058823529412
55 0.618181818181818 0.381818181818182 0.236363636363636 0.145454545454545
89 0.617977528089888 0.382022471910112 0.235955056179775 0.146067415730337
144 0.618055555555556 0.381944444444444 0.236111111111111 0.145833333333333
233 0.618025751072961 0.381974248927039 0.236051502145923 0.145922746781116
377 0.618037135278515 0.381962864721485 0.236074270557029 0.145888594164456
610 0.618032786885246 0.381967213114754 0.236065573770492 0.145901639344262
987 0.618034447821682 0.381965552178318 0.236068895643364 0.145896656534954
1597 0.618033813400125 0.381966186599875 0.23606762680025 0.145898559799624
2584 0.618034055727554 0.381965944272446 0.236068111455108 0.145897832817337
4181 0.618033963166707 0.381966036833293 0.236067926333413 0.14589811049988
6765 0.618033998521803 0.381966001478197 0.236067997043607 0.14589800443459
10946 0.618033985017358 0.381966014982642 0.236067970034716 0.145898044947926
17711 0.618033990175597 0.381966009824403 0.236067980351194 0.145898029473209
28657 0.618033988205325 0.381966011794675 0.23606797641065 0.145898035384025
46368 0.618033988957902 0.381966011042098 0.236067977915804 0.145898033126294
75025 0.618033988670443 0.381966011329557 0.236067977340886 0.14589803398867
121393 0.618033988780243 0.381966011219757 0.236067977560485 0.145898033659272
196418 0.618033988738303 0.381966011261697 0.236067977476606 0.145898033785091
317811 0.618033988754323 0.381966011245677 0.236067977508645 0.145898033737032
514229 0.618033988748204 0.381966011251796 0.236067977496407 0.145898033755389
832040 0.618033988750541 0.381966011249459 0.236067977501082 0.145898033748377

You can do other sequences where f(0) and f(1) are arbitrary integers. Let's look at the sequence where f(0) = 5 and f(1) = 13. Each successsive term is found in the same manner as above f(n) = f(n-1) + f(n-2). In the chart below, the first column is the sequence, the second column is the ratio of to adjacent terms, and the third column is the ratio of every second term. What do you notice about this chart compared to the Fibonnaci sequence? Each ratio has the same limit. Do you think this is true for all such sequences?

5
13 0.384615384615385
18 0.722222222222222 0.277777777777778
31 0.580645161290323 0.419354838709677
49 0.63265306122449 0.36734693877551
80 0.6125 0.3875
129 0.62015503875969 0.37984496124031
209 0.617224880382775 0.382775119617225
338 0.618343195266272 0.381656804733728
547 0.617915904936015 0.382084095063985
885 0.618079096045198 0.381920903954802
1432 0.618016759776536 0.381983240223464
2317 0.618040569702201 0.381959430297799
3749 0.618031475060016 0.381968524939984
6066 0.618034948895483 0.381965051104517
9815 0.618033622007132 0.381966377992868
15881 0.618034128833197 0.381965871166803
25696 0.618033935242839 0.381966064757161
41577 0.618034009187772 0.381965990812228
67273 0.618033980943321 0.381966019056679


Return