Let's look at our sequence for the first 30 terms. As we can see, the ratio of subsequent terms approaches The Golden Ratio closer and closer.
1 | |
1 | 1 |
2 | 2 |
3 | 1.5 |
5 | 1.66666666666667 |
8 | 1.6 |
13 | 1.625 |
21 | 1.61538461538462 |
34 | 1.61904761904762 |
55 | 1.61764705882353 |
89 | 1.61818181818182 |
144 | 1.61797752808989 |
233 | 1.61805555555556 |
377 | 1.61802575107296 |
610 | 1.61803713527851 |
987 | 1.61803278688525 |
1597 | 1.61803444782168 |
2584 | 1.61803381340013 |
4181 | 1.61803405572755 |
6765 | 1.61803396316671 |
10946 | 1.6180339985218 |
17711 | 1.61803398501736 |
28657 | 1.6180339901756 |
46368 | 1.61803398820532 |
75025 | 1.6180339889579 |
121393 | 1.61803398867044 |
196418 | 1.61803398878024 |
317811 | 1.6180339887383 |
514229 | 1.61803398875432 |
What is the Golden Ratio?
|
From this, we can see that the successive ratios are getting closer and closer to the true value. Let's take a look at the variance from the actual value as well as the ratio of our values to the true value.
Fibonnaci | f(n-1)/f(n) | variance | ratio |
1 | |||
1 | 1 | -0.618033988749895 | 0.618033988749895 |
2 | 2 | 0.381966011250105 | 1.23606797749979 |
3 | 1.5 | -0.118033988749895 | 0.927050983124842 |
5 | 1.66666666666667 | 0.0486326779167718 | 1.03005664791649 |
8 | 1.6 | -0.0180339887498948 | 0.988854381999832 |
13 | 1.625 | 0.0069660112501051 | 1.00430523171858 |
21 | 1.61538461538462 | -0.00264937336527948 | 0.998362597211369 |
34 | 1.61904761904762 | 0.00101363029772417 | 1.00062645797602 |
55 | 1.61764705882353 | -0.000386929926365465 | 0.999760864154242 |
89 | 1.61818181818182 | 0.000147829431923263 | 1.00009136361347 |
144 | 1.61797752808989 | -0.000056460660007307 | 0.999965105393088 |
233 | 1.61805555555556 | 0.0000215668056606777 | 1.00001332901893 |
377 | 1.61802575107296 | -8.23767693347577E-06 | 0.999994908835667 |
610 | 1.61803713527851 | 3.14652861965747E-06 | 1.00000194466163 |
987 | 1.61803278688525 | -1.20186464891425E-06 | 0.999999257206797 |
1597 | 1.61803444782168 | 4.59071787028975E-07 | 1.00000028372197 |
2584 | 1.61803381340013 | -1.75349769593325E-07 | 0.999999891627882 |
4181 | 1.61803405572755 | 6.69776591966098E-08 | 1.00000004139447 |
6765 | 1.61803396316671 | -2.55831884565794E-08 | 0.99999998418872 |
10946 | 1.6180339985218 | 9.77190839357434E-09 | 1.00000000603937 |
17711 | 1.61803398501736 | -3.73253694618825E-09 | 0.999999997693165 |
28657 | 1.6180339901756 | 1.4257022229458E-09 | 1.00000000088113 |
46368 | 1.61803398820532 | -5.44569944693762E-10 | 0.999999999663437 |
75025 | 1.6180339889579 | 2.08007167046276E-10 | 1.00000000012856 |
121393 | 1.61803398867044 | -7.94517784896698E-11 | 0.999999999950896 |
196418 | 1.61803398878024 | 3.03477243335237E-11 | 1.00000000001876 |
317811 | 1.6180339887383 | -1.15918386001113E-11 | 0.999999999992836 |
514229 | 1.61803398875432 | 4.42756942220512E-12 | 1.00000000000274 |
We can also see that our sequence is oscillating around the correct value. Let's examine how this functions behaves:
|
Looking at terms other than f(n+1)/f(n) ...
Fibonnaci | f(n+1)/f(n) | f(n+2)/f(n) | f(n+3)/f(n) | f(n+4)/f(n) |
1 | ||||
1 | 1 | 2 | 3 | 5 |
2 | 2 | 3 | 5 | 8 |
3 | 1.5 | 2.5 | 4 | 6.5 |
5 | 1.66666666666667 | 2.66666666666667 | 4.33333333333333 | 7 |
8 | 1.6 | 2.6 | 4.2 | 6.8 |
13 | 1.625 | 2.625 | 4.25 | 6.875 |
21 | 1.61538461538462 | 2.61538461538462 | 4.23076923076923 | 6.84615384615385 |
34 | 1.61904761904762 | 2.61904761904762 | 4.23809523809524 | 6.85714285714286 |
55 | 1.61764705882353 | 2.61764705882353 | 4.23529411764706 | 6.85294117647059 |
89 | 1.61818181818182 | 2.61818181818182 | 4.23636363636364 | 6.85454545454545 |
144 | 1.61797752808989 | 2.61797752808989 | 4.23595505617978 | 6.85393258426966 |
233 | 1.61805555555556 | 2.61805555555556 | 4.23611111111111 | 6.85416666666667 |
377 | 1.61802575107296 | 2.61802575107296 | 4.23605150214592 | 6.85407725321888 |
610 | 1.61803713527851 | 2.61803713527851 | 4.23607427055703 | 6.85411140583554 |
987 | 1.61803278688525 | 2.61803278688525 | 4.23606557377049 | 6.85409836065574 |
1597 | 1.61803444782168 | 2.61803444782168 | 4.23606889564336 | 6.85410334346505 |
2584 | 1.61803381340013 | 2.61803381340013 | 4.23606762680025 | 6.85410144020038 |
4181 | 1.61803405572755 | 2.61803405572755 | 4.23606811145511 | 6.85410216718266 |
6765 | 1.61803396316671 | 2.61803396316671 | 4.23606792633341 | 6.85410188950012 |
10946 | 1.6180339985218 | 2.6180339985218 | 4.23606799704361 | 6.85410199556541 |
17711 | 1.61803398501736 | 2.61803398501736 | 4.23606797003472 | 6.85410195505207 |
28657 | 1.6180339901756 | 2.6180339901756 | 4.23606798035119 | 6.85410197052679 |
46368 | 1.61803398820532 | 2.61803398820533 | 4.23606797641065 | 6.85410196461598 |
75025 | 1.6180339889579 | 2.6180339889579 | 4.2360679779158 | 6.85410196687371 |
121393 | 1.61803398867044 | 2.61803398867044 | 4.23606797734089 | 6.85410196601133 |
196418 | 1.61803398878024 | 2.61803398878024 | 4.23606797756049 | |
317811 | 1.6180339887383 | 2.6180339887383 | ||
514229 | 1.61803398875432 |
We can see that taking the f(n+2)/f(n) sequence yields us ... phi + 1. The other terms give us successive powers of phi, i.e.:
This pattern is bound to continue ...
Looking starting points other than f(1) = 1 and f(2) = 1 ...
|
|
|
It looks like it doesn't matter which values we choose as our starting point - the sequence is bound to converge to phi sooner or later. Let's look at why that's the case ...
|
The coefficients of both the 'a' and 'b' terms are consecutive numbers from the Fibonnaci sequence. Dividing f(n+1)/f(n) will start approaching phi. Why is that the case?
Here goes our proof ...
The positive value will give us Phi.