Proof by induction
One proof of triangular numbers is by induction.
T(n) = 1 + 2 + 3 + ...+ n = [n ( n+ 1)]/ 2
Proof: Let n = 1.
If n = 1, then [1 (2)] / 2 = 1, which is true.
Let n = k such that k is a positive integer
1 + 2 + 3 + ... + k = [k(k+1)]/2
I must show that k + 1 is true.
1 + 2 + 3 + ... + k + (k + 1) = (1 + 2 + 3 + ... + k ) + (k + 1)
...............................................= [k(k+1)]/2 + (k + 1)
...............................................=[k(k+1)]/2 = [2(k+1)]/2
..............................................=[k^2 + 3k + 3]/2
..............................................=[(k + 1) (k + 2)] /2
..............................................= [(k + 1) (k + 1 + 1)] /2
So by mathematical induction, this statement is true for all n. Q.E.D.
Proof by Numerical
t (n) = 1 + 2 + 3 + .....+ n -1 + n
t(n) = n + n-1 + n-2 + ...+2 + 1
2 t(n) = (n + 1) + (n + 1) + (n + 1) +...+ (n+1)
2 t(n) = n ( n+1)
t(n) = [n ( n+ 1)]/ 2
Geometric Proof
1 x 1
2 x 3
1 + 2
4 x 3
1 + 2 + 3
5 x 4
1 + 2 + 3 + 4
So my conclusion is that
1/2 *(n + 1) x n =
1 + 2 + 3 + ...+ n