Assignment #9
Pedal Triangles

by Kelli Nipper

Let triangle ABC be any triangle, and select an arbitrary point (P) that can be anywhere in a plane. The triangle created by connecting the pedal point with perpendicular segments of the lines of the original triangle(extended if necessary) is the Pedal Triangle.

Click the picture to see the pedal triangle for various shapes of triangle ABC and various positions of pedal point P.

Click Here to explore the relationship between the location of the pedal point P and the resulting Pedal Triangle RST.


Return to Kelli's Class Page