Section 1
1. 4 + 12i 2. section 1 - question 2 3. section 1 - question 3
4. i3 = –i 5. –32 – 24i 6. 32
7. section 1 - question 7 8. section 1 - question 8 9. section 1 - question 9
10. section 1 - question 10 11. section 1 - question 11 12. 3x3y

Section 2
1. x = 2 2. x = –1/2 3. x = 28
4. –1/5 ± (i/5)Ö2 5. x = –68, 60 6. x = 81
7. x = –1/5, 3 8. (–¥, –10] È [3,¥) 9. (–4, –1) È (4,¥)
10. (–¥, –5) È [–3, ¥) 11. (–¥, –7) È (–1, ¥) 12. x = –9, 3
13. no solution 14. (–¥, ¥) 15. 10 lbs. of hazelnuts
16. 36/7 hours 17. 29 and 6 18. l = 6 and w = 8
19. The maximum area is
400 cm2
20. 
  1. $5543.59
  2. $5552.70
  3. $5553.53
  4. $5553.55
  5. $5553.55
21. approx. 17 years
22. 3.2 grams of gold 23. y = 4000x + 80000 24. 11 and 6

Section 3
1. y = –x/2 + 1/2 2. y = (5/3)x + 6 3. 5
4. section 3 - question 4 5. (–6, 8) 6. (x + 16)2 + (y – 31)2 = 25
7. center is (8, –5)
and radius is 7
8. section 3 - question 8 9. section 3 - question 9
10. section 3 - question 10 11. section 3 - question 11 12.
  • x = |y| + 3; symmetric about the x-axis
  • y = x2 – 7; symmetric about the y-axis
  • y = x3 + 2x – 1; not symmetric

Section 4
1. section 4 - question 1
The domain and range of both f(x) and f -1(x) is (–¥,¥).
2. f -1(x) = x2 – 3.
The domain of f(x) is [–3, ¥), its range is [0, ¥).
The domain of f -1(x) is [0, ¥) and its range is [–3, ¥)
3. f -1(x) = (x + 7)/5.
The domain and range of both f(x) and f -1(x) is (–¥,¥).
4. The domain of f(x) is
(–¥, 4) È (4,¥).
5. The domain of f(x) is
(–¥, –5) È (–5, –3/2)
È (–3/2, ¥).
6. The domain of f(x) is
(–¥, ¥).
7. The domain of f(x) is
[–5, 5].
8. The domain of f(x) is
(–¥, ¥).
 

Section 5
1. x = (log 37)/(log 4) – 2 2. x = 2 3. x = (ln 8)/2
4. x = 13





5. x = 2





6. section 5 - question 6





7. section 5 - question 7 8. 5 log2 x + log2 (x + 1)
– 2 log2 y – 3 log2 z
9. Domain (–¥,¥) and Range (3,¥)
section 5 - question 9
10. Domain (–¥,0) and Range (–¥,¥)
section 5 - question 10
   

Section 6
1. 5x3 – 4x2x + 5 ; R: –6 2. x4  – 2x3  + 4x2  + x + 8;
R: –1
3. 2x2  – x  –1; R: –2
4. Yes, x – 2 is a factor. 5. f(–5) = –365 6. –5 multiplicity 2;
5 mulitplicity 1;
and –3 mulitplicity 5
7. ±1, ±2, ±4, ±1/5, ±2/5, ±4/5