Given any triangle ABC, construct squares externally on each side; locate the centroid of each square and join it with the oposite angles ABC. Show that the lines are concurrent and explore the relationship between the point of concurrence and the orthocenter, centroid, incenter, and circumcenter of the triangle ABC.
It seems that I have again a point of concurrence:
Let's call this point T, and refer to the section Proofs to see why the
lines are concurrent.
In the last exploration we analyzed if the point T was colineal with any
of the Triangle Centers of the original triangle, and found that there is
no colinearity relationship between T and the Triangle centers. The next
table summarizes the result; the entries answer the question, Are T, the
point in the row-label, and the point in the colum-label colinear?
...............................G.......... H...........K.......... I
Centroid, G............--.......... No........ No........ No
Orthocenter, H...... --............--.......... No........ No
Circumcenter, K....--............--...........--........... No
We established colinearity only in special cases, when the triangle was
isoceles and equilateral.
Let's fill a new table for this new extension of the problem.
..............................G.......... H...........K.......... I
Centroid, G............--.......... __..........__......... __
Orthocenter, H...... --............--..........__......... __
Circumcenter, K....--............--...........--.......... __
The next figures show the centroid and the orthocenter, and the centroid
and the circumcenter of two arbitrary triangles; observe that the line that
joins each pair does not contain T.
So we can fill two entries on our table:
..............................G.......... H...........K.......... I
Centroid, G............--.......... No..........No...... __
Orthocenter, H...... --............--..........__........ __
Circumcenter, K....--............--...........--......... __
Let's verify the the centroid with the incenter, and the orthocenter with
the circumcenter:
The entries on our table are now:
So we can fill two entries on our table:
..............................G.......... H...........K.......... I
Centroid, G............--.......... No..........No...... No
Orthocenter, H.......--............--...........No........ __
Circumcenter, K....--............--...........--......... __
Next the orthocenter and the incenter:
Well it seems that we are going to be able to put a Yes in the table!
The entries on our table are now, but refer to the section Proofs to see
why we have a Yes:
So we can fill two entries on our table:
..............................G.......... H...........K.......... I
Centroid, G............--.......... No..........No...... No
Orthocenter, H.......--............--...........No.......Yes
Circumcenter, K....--............--...........--......... __
The last pair we need to verify is the circumcenter and the incenter:
And thya re not colinear with T, so our filled table is as follows:
..............................G.......... H...........K.......... I
Centroid, G............--.......... No..........No........No
Orthocenter, H.......--............--...........No........Yes
Circumcenter, K....--............--...........--...........No
We can not say anything different if the triangle is straight:
But we can, if the triangle is isoceles:
Here we two more propositions that deserve a proof!
In our next exploration, we are going to change the definition of T.