MAT 195 – Fall Quarter 2002

TEST 4 – Answers

NAME_______________________________________________________

Show work and write clearly.

For #1(5, find the derivative. Simplify all answers.
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 ANS: (use quotient and chain rules): 
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3. (6 pts.) 
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 ANS: (use implicit differentiation and solve for y(. use product rule for 
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Rearrange so that all terms with y( are on one side of equal sign:
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Factor out y( and solve for y(:
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4. (6 pts.) 
[image: image13.wmf]2

3

4

5

2

3

2

2

x

x

x

y

y

y

+

-

=

-

+

  ANS: (use implicit differentiation and solve for y():
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5. (7 pts.) 
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 ANS: (use logarithmic differentiation):

Take ln of both sides
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Use power property of logs:
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Differentiate implicitly, using chain and product rules for right side:
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Solve for y(:
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6. (7 pts.) 
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  ANS: (use chain rule): 
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For #7(9, find the second derivative. Simplify all answers.

7. (7 pts.) 
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 ANS: Rewrite as 
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8. (7 pts.) 
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[image: image29.wmf]6

6

1

x

y

-

=

 and use chain rule to find derivatives. OR differentiate implicitly: 
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. To find second derivative use chain and quotient rules: 
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. This simplifies to
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. Or you can substitute for y(: 
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9. (7 pts.) 
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10. (6 pts.) Find the absolute maximum and the absolute minimum values of f on the given interval: 
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[0, 4], we need only consider the critical value x = 3. Since the interval is a closed interval, find
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11. (6 pts.) Sketch the graph of a function that satisfies the given conditions: 
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ANS: One possibility is:
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This function has the following properties:

horizontal tangent lines at x = (2 and x = 5 {
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is concave up on [(2, 1] {
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is concave down elsewhere {
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is increasing on (((, 5) {
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12. (6 pts.) Given the graph of f (((x) below, find the intervals of concavity and the inflection points for f(x). EXPLAIN.
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ANS: f(x) is concave down when f (((x) < 0 and concave up when f (((x) > 0. Since the graph is f (((x),

f (((x) < 0 when the graph is below the x-axis and f (((x) > 0 when the graph is above the x-axis. Thus, f(x) is concave up on (2, 4), (6, 9) and concave down on (0, 2), (4, 6). The inflection points are where f(x) changes concavity or when f (((x) = 0. Thus the inflection points are at x = 2, 4, 6.

13. (6 pts.) Given the graph of f ((x) below, find

a. the intervals of increase or decrease of f(x)

b. the relative (local) maximum and minimum values of f(x)

c. the intervals of concavity and the inflection points for f(x)

EXPLAIN.
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ANS: 
a. f(x) is decreasing when f ((x) < 0 and increasing when f ((x) > 0. Since the graph is f ((x),

f ((x) < 0 when the graph is below the x-axis and f ((x) > 0 when the graph is above the x-axis. Thus, f(x) is increasing on ((2, 0), (4, () and decreasing on (((,(2), (0, 4).

b. The possible relative max/min points occur when f(((x) = 0. These points are at x = (2, 0, 2, 4. Now use the First Derivative Test to determine whether a max or min occurs at these points. If a function increases to a point (f ((x) > 0 or f ((x) is above the x-axis) then decreases after the point 

(f ((x) < 0 or f ((x) is below the x-axis), then a max occurs at the point. There is a similar argument for determining a min. Thus, a relative max occurs at x = 0 and a relative min occurs at x = (2, 4.


c. The inflection points occur when f (( (x) = 0. Since the graph is f ((x), the points where the

 f (( (x) = 0 are the points where f ((x) has horizontal tangent lines (i.e., where the derivative of f ((x) is zero). Thus, the inflection points occur at x = (1, 1, 2, 3, 5. Lastly, f(x) is concave down when

f (((x) < 0 and concave up when f (((x) > 0. Since the graph is f ((x), the second derivative is the derivative of f ((x) (i.e., the second derivative describes whether f ((x) is increasing (f (((x) > 0) or decreasing (f (((x) < 0). Thus, f(x) is concave up (f (((x) > 0 or f ((x) increasing up to right) on (((,(1), (1, 2), (3, 5) and is concave down (f (((x) < 0 or f ((x) decreasing down to right) on ((1,1), (2, 3), (5, ().

14. (6 pts.) Given the graph of f(x) below, find

a. the intervals of increase or decrease f(x)

b. the relative (local) maximum and minimum values f(x)

c. the intervals of concavity and the inflection points for f(x)

EXPLAIN.

[image: image67.jpg]y=fx)





ANS:
a. Since the graph is f ((x), consider the graph directly. Thus, f(x) is increasing on (1, 3), (5, 7) , (8, 9) and decreasing on (0, 1), (3, 5) , (7, 8).

b. A relative max occurs at x = 0, 3, 7 and a relative min occurs at x = 1, 5, 8.


c. f(x) is concave up on (0, 2), (4, 6), (7.5, 9) and is concave down on (2, 4), (6, 7.5). The inflection points occur when the concavity changes and occur at x = 2, 4, 6, 7.5.

15. (5 pts.) Sketch the graph of a function whose first and second derivatives are always negative. EXPLAIN.

ANS: When the first derivative is negative, the function decreasing and when the second derivative is negative, the function concave down. Here is one possibility:
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16. (6 pts.) Find the relative (local) and absolute (global) maximum and minimum value(s) and the inflection point(s) of the function, if any. EXPLAIN. [Find exact values – estimated values will not receive credit.] 
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ANS: The possible max/min of a function occur when f ((x) = 0. 
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