Math 1431
Summer 2003 - Test \#3 - Answers
NAME
You are allowed to use your calculator. Show how you used the calculator to the questions below.
Explain all answers - answers with no explanation will receive only one-half credit.
Use complete sentences.

1. (20 points). Suppose you randomly answer a multiple choice test with 30 questions (each independent of each other). Suppose that each question has five possible answers only one of which is correct. Answer the following: ANS: This is a binomial situation with $n=30$ and $p=1 / 5=0.2$.
a. Find the mean and standard deviation for the number of correct answers.

ANS: The mean is $\mu=n p=30(0.2)=6$ and the standard deviation is $\sqrt{n p(1-p)}=\sqrt{30(0.2)(0.8)} \cong 2.19$
b. What is the probability of answering more than 12 questions correctly?

ANS: Use 1-binomcdf($30,0.2,12$) $=0.00311$.
c. What is the probability of answering less than 15 questions correctly?

ANS: Use binomcdf $(30,0.2,14)=0.99977$. We do not include 15 - we want less than 15 or less than or equal to 14 !
d. What is the probability of answering exactly 15 questions correctly?

ANS: Use binompdf($30,0.2,15$) $=0.000179$.
2. (10 points). Seven chips marked $0,1,2,3,4,5,6$ are placed in a box. Two chips are chosen randomly from the box. Let event A be the event that the first chip chosen is odd and event B be the event that the second chip is odd. The first chip is not replaced.

ANS: Here is the sample space:

θ, θ	1,0	2,0	3,0	4,0	5,0	6,0
0,1	1,4	2,1	3,1	4,1	5,1	6,1
0,2	1,2	$Z, 2$	3,2	4,2	5,2	6,2
0,3	1,3	2,3	3,3	4,3	5,3	6,3
0,4	1,4	2,4	3,4	4,4	5,4	6,4
0,5	1,5	2,5	3,5	4,5	5,5	6,5
0,6	1,6	2,6	3,6	4,6	5,6	6,6

$n=42$. Note that the number that is chosen with the first chip cannot be chosen with the second chip!
a. Find $\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B})$ [extra credit: find $\mathrm{P}(\mathrm{A}$ or B$)$ and $\mathrm{P}(\mathrm{A}$ and B$)$]

ANS:
$\mathrm{P}(\mathrm{A})=18 / 42=3 / 7$ (by counting the observations in the sample space).
$P(B)=18 / 42=3 / 7$ (by counting).
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)=3 / 7+3 / 7-1 / 7=5 / 7$.
$P(A$ and $B)=6 / 42=1 / 7$ (by counting).
b. Are A and B independent? Explain.

ANS: Since the first chip is NOT replaced, the two events are NOT independent.
3. (15 points). Seven chips marked $0,1,2,3,4,5,6$ are placed in a box. Two chips are chosen randomly from the box. Let event A be the event that the first chip chosen is odd and event B be the event that the second chip is odd. The first chip is replaced.
ANS: See sample space for $\# 2$ above.
a. Find $\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B}), \mathrm{P}(\mathrm{A}$ or B$)$ and $\mathrm{P}(\mathrm{A}$ and B$)$.

ANS:
$\mathrm{P}(\mathrm{A})=3 / 7$.
$\mathrm{P}(\mathrm{B})=3 / 7$.
$P(A$ and $B)=P(A) P(B)$ because the events are independent. So, $P(A$ and $B)=(3 / 7)(3 / 7)=9 / 49$.
$\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)=3 / 7+3 / 7-9 / 49=33 / 49$.
b. Are A and B independent? Explain.

ANS: Since the first chip is replaced, the two events are independent.
4. (15 points). Two fair six-sided dice are tossed. Event A is the toss of a five on at least one die. Event B is sum of seven on the toss of both die. Find the following:
ANS: Here is the sample space:

$1+1=2$	$2+1=3$	$3+1=4$	$4+1=5$	$5+1=6$	$6+1=7$
$1+2=3$	$2+2=4$	$3+2=5$	$4+2=6$	$5+2=7$	$6+2=8$
$1+3=4$	$2+3=5$	$3+3=6$	$4+3=7$	$5+3=8$	$6+3=9$
$1+4=5$	$2+4=6$	$3+4=7$	$4+4=8$	$5+4=9$	$6+4=10$
$1+5=6$	$2+5=7$	$3+5=8$	$4+5=9$	$5+5=10$	$6+5=11$
$1+6=7$	$2+6=8$	$3+6=9$	$4+6=10$	$5+6=11$	$6+6=12$

$n=36$.
a. $\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B}), \mathrm{P}(\mathrm{A} \mid \mathrm{B}), \mathrm{P}(\mathrm{B} \mid \mathrm{A})$.

ANS:
$\mathrm{P}(\mathrm{A})=\mathrm{P}(5$ on Die 1 or 5 on Die 2$)=\mathrm{P}(5$ on Die 1$)+\mathrm{P}(5$ on Die 2$)-\mathrm{P}(5$ on both Die $)=$
$6 / 36+6 / 36-1 / 36=11 / 36$.
$P(B)=P($ sum of 7$)=6 / 36=1 / 6$.
$P(A \mid B)=P(5$ on either Die given the sum is 7$)=2 / 6=1 / 3$. (There are 6 cases in which the sum is seven, 2 of which have a 5 on one of the die.) Alternatively, $P(A \mid B)=P(A$ and $B) / P(B)=2 / 36 \div 1 / 6=2 / 6=1 / 3$.
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}($ the sum is 7 given 5 on either Die) $=2 / 11$. (There are 11 cases in which a 5 appear on one of the die, 2 of which the sum is seven.) Alternatively, $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{A}$ and B$) / \mathrm{P}(\mathrm{A})=2 / 36 \div 11 / 36=2 / 11$.
b. Are A and B independent?

ANS: No, because $\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \quad \mathrm{P}(\mathrm{A})$.
5. (30 points). The table below shows the preference of cola of different age groups:

Under Age 15 Ages 15-25

Cola 1	150	100	200	450
Cola 2	300	125	200	625
Cola 3	300	200	300	800
Total	750	425	700	1875

a. Find the probability that a randomly chosen person prefers Cola 1.

ANS: $\mathrm{P}($ Cola 1$)=450 / 1875=6 / 25=0.24$.
b. Find the probability that the age of a randomly chosen person is between 15 and 25 .

ANS: $\mathrm{P}($ Ages $15-25)=425 / 1875=17 / 75 \quad 0.2267$.
c. Find the probability that the age of a randomly chosen person is between 15 and 35.

ANS: $\mathrm{P}($ Ages $15-35)=\mathrm{P}($ Ages $15-25$ or Ages $25-35)=\mathrm{P}($ Ages $15-25)+\mathrm{P}($ Ages $25-35)=425 / 1875+$ $700 / 1875=1125 / 1875=3 / 5=0.6$.
d. Find the probability that a randomly chosen person prefers Cola 3 given that the person is between 15 and 25 years old.
ANS: $\mathrm{P}($ Cola $3 \mid$ Ages $15-25)=\mathrm{P}($ Cola 3 and Ages 15-25 $) / \mathrm{P}($ Ages $15-25)=200 / 425=8 / 17 \quad 0.471$.
e. Find the probability that a randomly chosen person is under 15 years old given that $\mathrm{s} /$ he prefers Cola 1.

ANS: $\mathrm{P}($ Under Age $15 \mid$ Cola 1$)=\mathrm{P}($ Cola 1 and Under Age 15$) / \mathrm{P}($ Cola 1$)=150 / 450=1 / 3 \quad 0.333$.
f. Is the age of individuals and the cola preference independent? Explain using the definition of independence.

ANS: NO, the age of individuals and the cola preference are not independent since P (Cola $3 \mid$ Ages 15-25) $\mathrm{P}($ Cola 3). Note that $\mathrm{P}($ Cola 3$)=800 / 1875=32 / 75$.
6. (10 points). The mean and standard deviation of a random sample of 30 students' IQ at a certain college are 120.3 and 10.5 respectively. Find the $90 \%, 95 \%$ and 99% confidence intervals for the average IQ for all students in the school.
ANS: The 90% CI is 117.15 to 123.45 . The 95% CI is 116.54 to 124.06 . The 99% CI is 115.36 to 125.24 .

