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Prompt

Mr. Jones had noticed his students saw no direct connection between the work they had done on factoring quadratics and the quadratic formula.  Often students applied the quadratic formula on things that were factorable over the integers. When the roots were not integers and his students used the quadratic formula, they seemed to see no direct connection of the results with the process of factoring. Mr. Jones wanted to think of a way to provide problems for his students so that they might see the connection between factoring over the integers and the process of factoring in more general settings.

Commentary
To provide a connection between factoring and the quadratic formula I have interpreted algebraic statements about quadratic polynomials as areas. This approach is consistent with quantitative approaches (cf. Thompson, 1988, 1993) that stress the importance of having algebraic notation be the results of rather than the starting place for mathematical activity (cf. Chazan, 2000; Mason, 1987). The problematic that runs through all these examples is to represent these areas as either a rectangle or square and then to find the two linear dimensions for the square or rectangle. In the linear context, I interpret x simply as an unknown length and will not worry too much about finding values of x for which the polynomial equation is 0 (the polynomial’s roots). Finding roots should not be too large of a step although it does require being able to think of areas and lengths as having an orientation.  In a curricular context, it is probably a good idea to work on problems where the linear dimensions are given [i.e. (x+1)(x+3)] and students’ use them to produce areas first. That is, factoring—finding the linear dimensions of a given area—should be an inverse process of using two linear dimensions to produce an area. Here, I intend to focus only on the process of factoring—starting with an area and finding the linear dimensions—and the algebraic operations that underlie this process. Focus 1 works on the algebraic operations used in factoring over the integers and tries to relate how multiplicative and additive operations are developed. Focus 2 & 3 examines the two processes central to the quadratic formula, factoring the difference of two squares and completing the square. Focus 4 puts together the ideas in focus 1 through 3 to look at factoring over the real numbers and the quadratic formula.  

Focus 1: Factoring Quadratics Over the Integers

One can begin by using the following areas to represent a quadratic polynomial.  Both the linear and area units are labeled:
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One might begin by representing x2+ 3x + 2 (shown below) a relatively simple quadratic polynomial. The problem in words might be stated that an area of x2 is increased by an area of 3x and an area of 2. It is important to remember that we don't a priori know how this factors so this is what we need to figure out.  One can add areas of x to get a sense of how additive combinations of x produce multiplicative combinations of unit areas. Also, the equivalence x2+ 3x + 2 = (x+2)(x+1) grows out of naming the area quantity in two different ways. The first is as a sum of the subareas. The second is as the product of its linear dimensions. This type of equivalence is important in mathematics and student difficulties with it have been noted in various research agendas (Falkner, Levi, & Carpenter, 1999; Kieran, 1981).  Notice that one of the constraints on the problem is that the final area must be in the form of a rectangle or square.  It is possible to represent this area without having it be in the form of a rectangle or square but this condition is what makes the problem problematic!! To try representing different areas see the linked GSP file that allows a person to manipulate our various pieces, x2, x, 1, to make various areas.
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We may now try a slightly different problem.  This time we want to represent the area x2- 5x + 6.  We may try decreasing the area x2 in various ways by 5x. In doing, so we have to be careful because we will always create an overlapping section in the upper right corner where we have in essence done a "double" decrease.  The amount we have decreased by twice will always be some number of unit areas.  Therefore, we will need to increase by the total number of unit areas that we have decreased twice by in order to figure out the total area of the remaining rectangle. In representing our area, we see that we have decreased the x2 square by 5x which has caused us to decrease twice by 6 unit areas.  So the visible light blue area now represents the area that we wanted to represent or x2 - 5x + 6 (shown below). We need to look carefully now at the diagram to make an interpretation because x2 is represented by the entire square both the light and dark blue parts and is of dimensions x by x. One of the most significant difficulties of this problem is that it becomes apparent that the representation is just that and a person needs to do some significant thinking work to attribute meaning to it.
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Next, one might think about representing the area x2 + x - 6. In this situation, we are pressed more to relate how increasing and decreasing by areas of x relates to the multiplicative composition of the unit areas.  We might try increasing x2 by the area of x but then we run into the problem of subtracting off 6 area units and this cannot be done along with meeting the condition that the final area be represented by a square or rectangle.  So we need to find other ways of adding an area of x to the total area.  We can do this by decreasing by an area of x on one side and increasing by an area of 2x on the other. However, this doesn't leave of us with the correct total area because we would have only decreased by 2 unit areas.  We need to continue to try finding new ways of additively producing an area of x. By making choices of how we add areas of x we determine the number of unit areas we are increasing or decreasing the total area by and vice versa. Therefore, the decrease in 6 units of area comes from having added on 6 units of area when we tried to increase the area of x2 by x. The final dimensions of the area are (x-2)(x+3). Note that the light blue area and dark blue area represent x2, the dark blue area represents our decrease of 2x areas, the purple our increase of 3x areas, and the black area represents a decrease of 6 unit areas. 
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At this point, it is useful to begin to find relationships between the signs of the areas and what strategy we might try.  For instance, if there is a decrease or negative number of unit areas, we will always have to decrease by some number of x areas on one axis and increase on the other axis (as in representing x2 + x – 6).  On the other hand if there is an increase or positive number of unit areas we will have to either decrease by some number of x areas (as in representing x2- 5x + 6) on both axes or increase by some number of x areas on both axes (as in representing x2+ 3x + 2) depending on the sign of the x areas. 

It is worth noting that observing these relationships are consistent with the historical development of the quadratic polynomials. In the 15th century quadratic polynomials were classified into four different kinds depending on the signs of the coefficients of a, b, and c. Here we have only made a classification based on the signs of b and c.
Focus 2: The Difference of Two Squares

One might now consider the problem of making an area of x2-9. Since we are naive, currently, we will construct the difference of two squares in a way that doesn't yield a total area that is a rectangle or square.  For now, we will be satisfied to be able to represent it in this way. 
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Now we need to ask ourselves how is it possible to transform this area into a rectangle or square.  Notice that in this problem we have already represented the area we want. Therefore, we need to think about actually moving around the area we have so that it becomes a rectangle or square.  For this transformation, see below.
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To make a rectangular area it is possible to reason that we can move some area that was on the horizontal axis to where it is now shown on the vertical axis. The area that was on the horizontal axis is shown transformed in red on the vertical axis.  This transformation leaves us with a rectangular area whose linear dimensions are (x + 3) and (x - 3) and whose area is x2 - 9 giving the equivalence x2-9 = (x +3)(x -3). This process can be generalized to any rational number.

Focus 3: Completing the Square
We now might turn to a problem where we place a slightly higher restriction on the resulting area. Namely, that it must be a square. That is, we want to represent an area of x2+ 6x + __.  The __ is some unknown number of unit areas.  This problem after all of the previous work should be relatively simple. That is, if we want a square the symmetry involved in the situation requires that we increase each side of x2 by 3x. In turn, this action fixes the unknown number of unit areas that we have to increase by at 9.  We have created an area of (x+3)2 or x2 + 6x + 9 (shown below). This process can again be generalized to any rational number.
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Focus 4: Factoring in Contexts that Involve Real Roots

We might try a new challenge, representing an area of x2 + 6x + 7.  It is clear that there is no integer solution to this problem (if it is not try all various combinations of increasing the area x2 by 6x and you will find that it won’t produce 7 unit areas). Seeing no obvious rational solution either, it might help to use the methods of completing the square and the difference of two squares (depicted to the left). Having worked on building up any integer as being representable by the area of a square (see situation 28), it is possible to represent the desired area by the difference of two squares.  To do so, first, we will complete the square. In completing the square, we have increased our area by 2 extra units.  So we need to decrease this area by 2 units.  However, we want to be able to end up with a rectangular figure.  Knowing we can do this if we make it into a difference of squares problem, we decide to make a square of area 2 in order to make the desired decrease (depicted on the right). 
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Our total area is now represented, x2 + 6x + 7, but we have not yet met the condition of getting the total area into a rectangular figure so that we can find two names for our area see below for this final transformation.
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Once again we have transformed area from the horizontal axis to the vertical axis.  We now need to find an algebraic expression for the dimensions of our sides, which is 
[image: image13.wmf].  This expression is equivalent to the area we started with or x2 +6x + 7 because we have only transformed a small piece of the area.  After doing several of these type of problems, it might be worth reflecting on how it is that we can tell if a quadratic polynomial is going to have non-rational real roots. An answer to this question is whenever half the constant multiplying the x areas squared is greater than the number of unit areas to be added.  Figuring out relationships like this gives an idea about how we might look at a polynomial and tell when it is going to have a real solution.  It also leads into questions like when will a quadratic polynomial have roots that are not real and what happens as a result.

For instance, suppose we have an area that is x2 + 6x + 10.  Given that we have gotten good at generalizing our process at this point we can simply see that this will factor into (x + 3)2 + 1.  We know that we can factor this into linear dimensions if we can write this as the difference of two squares.  In order to do this, we might consider the question can a perfect square have area -1? If we accept that it is possible to make a model for such a square, then it is possible to think of this as (x+3) 2 - (-1). In order to proceed, we need to develop ideas about complex numbers and we might consider doing so by looking at reversing the conventional way of orienting areas.  Since the goal here is not to develop a model for the complex numbers, I will simply define i to be the side of a square whose area is -1.  Then we can proceed to see (albeit now in our mind's eye) that the rectangular figure that we would produce in creating the difference of two squares is (x + 3 - i)(x + 3 + i).  To really work on generalizing to this level more work would need to be done in making a model of the complex numbers. However, we now might turn to creating a general model for finding the linear dimensions of a monic polynomial which we have interpreted as representing an area.  That is, we might think of a polynomial of the form x2 + bx +c where we might first complete the square as follows (x +(b/2)) 2 - ((b(^2)/4)-c) and then figure out the linear dimensions from reasoning about the difference of two squares giving a factorization of 
[image: image14.wmf]. This corresponds to the more general quadratic formula when a =1. We can then apply the process above to get a formulation of the quadratic formula. 
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� Many of these problems are based on problems posed in Dr. Steffe’s EMAT 7080.





_1094043394.unknown

_1094044024.unknown

