Assignment # 12

Fall 2002 Semester

Spreadsheets - The Spreadsheet in Math Exploration


The Spreadsheet in Mathematics Explorations

 

Two different applications of the spreadsheet are shown in this example.

In the “Maximization of a Lidless Box”, the spreadsheet tool is used to iterate the problem to determine a solution.

In the “Cooling of Boiling Water” the different tools within the spreadsheet tools are used to determine an equation that approximates measured data.

Both tools are useful from the classroom perspective as methods to understand the mathematics behind the problem.

Some additional spreadsheet examples are provided at the end. See Other Examples...

Return to previous page...

Maximization of a Lidless Box

This example shows the effectiveness of the spreadsheet in the determination of a solution for a problem concerning maximization or minimization.  The problem noted is one where the  maximum volume of a lidless box is desired.  A square, with square corners removed is given with an overall outside dimension of 5 X 8.  How large should the square corners be?  It is easily seen that the corners determine the height of the box desired.  The height will impact the length and width (and subsequent volume)

 

The corners are cutout and folded along the lines shown.

 

The spreadsheet allows us to make multiple calculations of the volume of the open box,  by changing the dimensions on the cutout squares in the corners.  

Using S to represent the side dimension of the cutout squares, the relationship of S to the length, width and height of the box is as follows:

(Height) H = S

(Width) W = 5 – (2*S)  ;  The width is reduced by the twice the cutout side dimension.

(Length) L = 8 – (2*S) ;  The length is also reduced by twice the cutout side dimension.

Volume = Height * Width * Lengt 

V = S * (5 – (2*S)) * (8-(2*S))

V = S (5-2S)(8-2S)

V = 4S3 - 26S2 + 40S

 

Using the spreadsheet, we can setup a table where we start with values for S and progressively determine the height, length and width.

 

The table below shows the first pass, at determining the answer to the maximization problem:

 

Problems of Maximization

Lidless box formed by 5 X 8 sheet with a square removed from each corner….

x

8

5

 

Height

Length

Width

Volume

0.10

7.80

4.80

3.74

0.20

7.60

4.60

6.99

0.30

7.40

4.40

9.77

0.40

7.20

4.20

12.10

0.50

7.00

4.00

14.00

0.60

6.80

3.80

15.50

0.70

6.60

3.60

16.63

0.80

6.40

3.40

17.41

0.90

6.20

3.20

17.86

 1.00

6.00

3.00

18.00

1.10

5.80

2.80

17.86

1.20

5.60

2.60

17.47

1.30

5.40

2.40

16.85

1.40

5.20

2.20

16.02

1.50

5.00

2.00

15.00

1.60

4.80

1.80

13.82

1.70

4.60

1.60

12.51

1.80

4.40

1.40

11.09

1.90

4.20

1.20

9.58

2.00

4.00

1.00

8.00

2.10

3.80

0.80

6.38

2.20

3.60

0.60

4.75

2.30

3.40

0.40

3.13

2.40

3.20

0.20

1.54

2.50

3.00

0.00

0.00

 

The highlighted area indicates an appropriate area to look further into the solution.   The next two tables further expands the area of interest.

Height

Length

Width

Volume

 

Height

Length

Width

Volume

0.90

6.20

3.20

17.856

 

0.990

6.020

3.020

17.9986

0.91

6.18

3.18

17.884

 

0.991

6.018

3.018

17.9989

0.92

6.16

3.16

17.908

 

0.992

6.016

3.016

17.9991

0.93

6.14

3.14

17.930

 

0.993

6.014

3.014

17.9993

0.94

6.12

3.12

17.949

 

0.994

6.012

3.012

17.9995

0.95

6.10

3.10

17.965

 

0.995

6.010

3.010

17.9996

0.96

6.08

3.08

17.977

 

0.996

6.008

3.008

17.9998

0.97

6.06

3.06

17.987

 

0.997

6.006

3.006

17.9999

0.98

6.04

3.04

17.994

 

0.998

6.004

3.004

17.9999

0.99

6.02

3.02

17.999

 

0.999

6.002

3.002

18.0000

1.00

6.00

3.00

18.000

 

1.000

6.000

3.000

18.0000

1.01

5.98

2.98

17.999

 

1.001

5.998

2.998

18.0000

1.02

5.96

2.96

17.994

 

1.002

5.996

2.996

17.9999

1.03

5.94

2.94

17.988

 

1.003

5.994

2.994

17.9999

1.04

5.92

2.92

17.978

 

1.004

5.992

2.992

17.9998

1.05

5.90

2.90

17.966

 

1.005

5.990

2.990

17.9997

1.06

5.88

2.88

17.950

 

1.006

5.988

2.988

17.9995

1.07

5.86

2.86

17.933

 

1.007

5.986

2.986

17.9993

1.08

5.84

2.84

17.912

 

1.008

5.984

2.984

17.9991

1.09

5.82

2.82

17.890

 

1.009

5.982

2.982

17.9989

1.10

5.80

2.80

17.864

 

1.010

5.980

2.980

17.9986

 

The solution appears center around 1.000 for the maximum volume of the box.  The solution can also be shown by performing the integration of the volume equation given the starting values.  This in turn links the observed multiple calculations with the calculated values.

A copy of the spreadsheet used for this example is provided at the following link.   (Note: EXCEL Spreadsheet - Office 2000 Version)

Lidless Box Spreadsheet

RETURN to TOP of PAGE

 

Cooling of Boiling Water – A Measurement Problem

 

 

The table of the measured temperature readings is provided below:

 

Minute

Temperature

0

212

1

205

2

201

3

193

4

189

5

184

6

181

7

178

8

172

9

170

10

167

11

163

12

161

13

159

14

155

15

153

16

152

17

150

18

149

19

147

20

145

21

143

22

141

23

140

24

139

25

137

26

135

27

133

28

132

29

131

30

130

 

The graph of this table is provided below:

 

 

The graph shows an almost linear function.  The spreadsheet function provides us with tools that will give us an approximate equation for the line.   Using this tool, and forcing the y-intercept to be at 212 degrees F, yielded the following equation:

 

y = -3.0951x + 212

 

Minutes

Deg F

y=-3.0951x+212

Error

0

212

212

0

1

205

209

4

2

201

206

5

3

193

203

10

4

189

200

11

5

184

197

13

6

181

193

12

7

178

190

12

8

172

187

15

9

170

184

14

10

167

181

14

11

163

178

15

12

161

175

14

13

159

172

13

14

155

169

14

15

153

166

13

16

152

162

10

17

150

159

9

18

149

156

7

19

147

153

6

20

145

150

5

21

143

147

4

22

141

144

3

23

140

141

1

24

139

138

1

25

137

135

2

26

135

132

3

27

133

128

5

28

132

125

7

29

131

122

9

30

130

119

11

 

Substituting in the linear expression into the spreadsheet yields the table shown above.  The plot of this is shown below.   Can we do better at determining a calculation that will represent the observed data?

 

 

The tool allows us to try other types of equations to represent our data.   A better approximation can be derived from choosing the polynomial solution method from the plotting function.  As can be seen the 2nd degree polynomial chosen yield the following:

 

y = 0.0707x – 4.7648x + 212

 

Minutes

Deg F

y=0.0707x*x-4.7648x+212

Error

0

212

212

0

1

205

207

2

2

201

203

2

3

193

198

5

4

189

194

5

5

184

190

6

6

181

186

5

7

178

182

4

8

172

178

6

9

170

175

5

10

167

171

4

11

163

168

5

12

161

165

4

13

159

162

3

14

155

159

4

15

153

156

3

16

152

154

2

17

150

151

1

18

149

149

0

19

147

147

0

20

145

145

0

21

143

143

0

22

141

141

0

23

140

140

0

24

139

138

1

25

137

137

0

26

135

136

1

27

133

135

2

28

132

134

2

29

131

133

2

30

130

133

3

 

The graph of the plot follows.  This is a much better approximation of the observed data.

 

 

By further expanding the polynomial(3rd, 4th and 5th degree), it can be seen that we do not seem to get much closer to the measurement data.  Some examples with the data are shown below:

 

3rd Degree Polynomial Solution:

 

y = -0.0012x3 + 0.1223x2 - 5.2521x + 212

 

4th Degree Polynomial Solution:

 

y = -0.0001x4 + 0.0055x3 + 0.0008x2 – 4.6149x + 212

 

5th Degree Polynomial Solution:

 

y = 2E-05x5 – 0.0015x4 + 0.0415x3 – 0.3757x2 – 3.3473x + 212

 

Minutes

Deg F

3rd Degree Polynomial

Error

4th Degree Polynomial

Error

5th Degree Polynomial

Error

0

212

212

0

212

0

212

0

1

205

207

2

207

2

208

3

2

201

202

1

203

2

204

3

3

193

197

4

198

5

200

7

4

189

193

4

194

5

195

6

5

184

189

5

190

6

190

6

6

181

185

4

185

4

186

5

7

178

181

3

181

3

181

3

8

172

177

5

178

6

177

5

9

170

174

4

174

4

173

3

10

167

171

4

170

3

169

2

11

163

167

4

167

4

166

3

12

161

165

4

164

3

163

2

13

159

162

3

161

2

161

2

14

155

159

4

159

4

159

4

15

153

157

4

156

3

157

4

16

152

154

2

154

2

155

3

17

150

152

2

152

2

154

4

18

149

150

1

151

2

152

3

19

147

148

1

149

2

151

4

20

145

146

1

148

3

151

6

21

143

145

2

147

4

150

7

22

141

143

2

146

5

150

9

23

140

141

1

145

5

150

10

24

139

140

1

145

6

151

12

25

137

138

1

144

7

151

14

26

135

137

2

144

9

153

18

27

133

136

3

143

10

154

21

28

132

134

2

143

11

157

25

29

131

133

2

142

11

160

29

30

130

132

2

142

12

165

35

 

The graphs of the 3rd, 4th and 5th degree polynomials shows the “spreading” of the lines representing the equations as we approach the end point of 30 minutes.

 

 

 

 

Investigations of power, exponential and logarithmic functions do not give us any better results than the 2nd degree polynomial fit.  The best fit equation for each is as follows:

 

Power Function:  y = 237.82x-0.1624

 

Logarithmic Function:  y = -27.097Ln(x) + 227.84

 

Exponential Function:  y = 212e-0.0177x

 

 

We can also split the graph into two linear or 2nd degree polynomial equations.    The results of this are shown in the attached table.  As can be seen, 2 linear expressions can approximate better than the single linear expression, but still not as good as the 2nd degree polynomial.

Minutes

Deg F

Linear

Error

2nd Degree Poly

Error

0

212

212

0

212

0

1

205

208

3

207

2

2

201

204

3

203

2

3

193

200

7

198

5

4

189

196

7

194

5

5

184

192

8

189

5

6

181

188

7

185

4

7

178

184

6

181

3

8

172

180

8

178

6

9

170

176

6

174

4

10

167

172

5

170

3

11

163

167

4

167

4

12

161

163

2

164

3

13

159

159

0

161

2

14

155

155

0

158

3

15

153

151

2

155

2

16

152

147

5

152

0

 

 

 

65

 

51

 

 

 

 

 

 

Minutes

Deg F

Linear

Error

2nd Degree Poly

Error

15

153

153

0

153

0

16

152

152

0

152

0

17

150

150

0

150

0

18

149

149

0

149

0

19

147

147

0

148

1

20

145

146

1

146

1

21

143

144

1

145

2

22

141

143

2

143

2

23

140

141

1

142

2

24

139

140

1

140

1

25

137

138

1

139

2

26

135

137

2

137

2

27

133

136

3

136

3

28

132

134

2

134

2

29

131

133

2

132

1

30

130

131

1

131

1

 

 

 

18

 

21

 

 

 

83

 

72

 

 

The first of the two graphs below reflect the appropriate equations for the first half of the recorded points.  The equations determined by the spreadsheet were:

 

Linear:  y = -4.0468x + 212

 

2nd degree Polynomial:  y = 0.0714x2 – 4.8759x + 212

 

The second graph reflect the equations for the 2nd half of the points.  Please note that the equations given by the spreadsheet tool reflect the time element effectively beginning at 0 rather than at 15.   The equations effectively are:

 

Linear: y = -1.4519(x-15) + 153

 

2nd degree Polynomial: y = -0.0166(x-15)2 -1.2463(x-15) + 153

 

 

 

 

 

Some additional questions may be asked – such as predicting when the liquid would cool to a specified temperature – e.g. 100 def F or room temperature (75 deg F).  

 

Each of the equations derived from the plots can be investigated with various results.  We can either perform the calculation directly from the equation, or extend the tables within the spreadsheet.  The single equation solutions, both linear and 2nd degree polynomial yield less than desirable results:

 

 

Single Equation

Dual Equation

Minutes

Linear

2nd Degree Poly

Linear

2nd Degree Poly

31

116

132

130

129

32

113

132

128

127

33

110

132

127

125

34

107

132

125

123

35

104

132

124

121

36

101

132

123

120

37

97

132

121

118

38

94

133

120

116

39

91

134

118

114

40

88

135

117

111

41

85

135

115

109

42

82

137

114

107

43

79

138

112

105

44

76

139

111

103

45

73

141

109

101

46

70

142

108

98

47

67

144

107

96

48

63

146

105

94

49

60

148

104

91

50

57

151

102

89

51

54

153

101

87

52

51

155

99

84

53

48

158

98

82

54

45

161

96

79

55

42

164

95

77

56

39

167

93

74

57

36

170

92

71

58

32

173

91

69

59

29

177

89

66

60

26

181

88

63

 

A graphic representation follows:

 

 

For the linear equation we see that we reach 100 deg F in about 37 minutes and 75 deg F in about 45 minutes.  This is not too surprising; however, the equation yields temperatures below room temperature (actually below freezing) within an hour.  This equation appears not to be a very good predictor.  It is important that this type of result be explained when presenting to classes.  Curve fitting techniques are typically focused on discrete ranges.  When the ranges investigated exceed the range initially defined, then poor results are possible.

 

This is further seen with the 2nd degree polynomial expression.  There are no valid solutions for y = 100 or y = 75.  When we examine this with the spreadsheet, it is evident that the temperature values extrapolated for later times, the temperature values begin to rise.  Again, this points out the dangers in extrapolation of what appeared to be a valid representation of the data between 0 and 30 minutes.

 

When we split the equations for the first 15 minutes and the last 15 minutes, then we have better results on the determination of time for 100 deg F and 75 deg F.   As can be seen, the results seem more realistic.  In the points of discussing this with a class, here it can be noted that the other parameters that affect the change in temperature over time may be necessary to better approximate the expected temperature over time.  E.g ambient temperature, thermal properties of the container.

A copy of the spreadsheet used for this example is provided at the following link.  (Note: EXCEL Spreadsheet - Office 2000 Version)

Cooling Water Spreadsheet

RETURN to TOP of PAGE

 

 Other Examples:

Some additional spreadsheet examples are provided below:

Factorial Example

Sine / Cosine Example

Fibonacci Example

Savings/Credit Card Example

Absolute Differences - 4 Numbers

 


 

Return to Previous Page