This write-up investigates the Fibonnaci Sequence where f(0) = 0, f(1) = 1, and f(n) = f(n-1) + F(n-2). There is also the Lucas Sequence where f(0) = 1 and f(1) = 3. You can also use Microsoft Excel to exlore other sequences that begin with any two integers you choose. Observe the charts of the sequences below and return to the disscussion.
The ratio of each pair of adjacent terms is given in the column labeled ratio first. Notice that the ratios converge to the Golden Ratio = 1.61803398874965.
The golden ratio is denoted as f. The exact value of the golden ratio is given below:
Here is a small proof that Dr. Wilson gave me to prove this:
Look at the limits of the ratios of every second, third, fourth, fifth, and sixth terms in the chart.
Here is a summary of the limits of these ratios:
The proofs of the limits can be done using the proof above:
The proofs of the eqivalences of the powers of F begin a little like this:
The other equivalences can be proven in a similar fashion.
SEQUENCE | RATIO | RATIO | RATIO | RATIO | RATIO | RATIO |
FIRST | SECOND | THIRD | FOURTH | FIFTH | SIXTH | |
1 | ||||||
3 | 3 | |||||
4 | 1.33333333333333 | 4 | ||||
7 | 1.75 | 2.33333333333333 | 7 | |||
11 | 1.57142857142857 | 2.75 | 3.66666666666667 | 11 | ||
18 | 1.63636363636364 | 2.57142857142857 | 4.5 | 6 | 18 | |
29 | 1.61111111111111 | 2.63636363636364 | 4.14285714285714 | 7.25 | 9.66666666666667 | 29 |
47 | 1.62068965517241 | 2.61111111111111 | 4.27272727272727 | 6.71428571428571 | 11.75 | 15.6666666666667 |
76 | 1.61702127659574 | 2.62068965517241 | 4.22222222222222 | 6.90909090909091 | 10.8571428571429 | 19 |
123 | 1.61842105263158 | 2.61702127659574 | 4.24137931034483 | 6.83333333333333 | 11.1818181818182 | 17.5714285714286 |
199 | 1.61788617886179 | 2.61842105263158 | 4.23404255319149 | 6.86206896551724 | 11.0555555555556 | 18.0909090909091 |
322 | 1.61809045226131 | 2.61788617886179 | 4.23684210526316 | 6.85106382978723 | 11.1034482758621 | 17.8888888888889 |
521 | 1.61801242236025 | 2.61809045226131 | 4.23577235772358 | 6.85526315789474 | 11.0851063829787 | 17.9655172413793 |
843 | 1.61804222648752 | 2.61801242236025 | 4.23618090452261 | 6.85365853658537 | 11.0921052631579 | 17.936170212766 |
1364 | 1.61803084223013 | 2.61804222648752 | 4.2360248447205 | 6.85427135678392 | 11.0894308943089 | 17.9473684210526 |
2207 | 1.61803519061584 | 2.61803084223013 | 4.23608445297505 | 6.85403726708075 | 11.0904522613065 | 17.9430894308943 |
3571 | 1.6180335296783 | 2.61803519061584 | 4.23606168446026 | 6.85412667946257 | 11.0900621118012 | 17.9447236180905 |
5778 | 1.61803416409969 | 2.6180335296783 | 4.23607038123167 | 6.85409252669039 | 11.0902111324376 | 17.944099378882 |
9349 | 1.61803392177224 | 2.61803416409969 | 4.23606705935659 | 6.85410557184751 | 11.0901542111507 | 17.9443378119002 |
15127 | 1.61803401433308 | 2.61803392177224 | 4.23606832819938 | 6.85410058903489 | 11.0901759530792 | 17.944246737841 |
24476 | 1.61803397897799 | 2.61803401433308 | 4.23606784354448 | 6.85410249229908 | 11.0901676483915 | 17.9442815249267 |
39603 | 1.61803399248243 | 2.61803397897799 | 4.23606802866617 | 6.85410176531672 | 11.0901708204985 | 17.9442682374264 |
64079 | 1.61803398732419 | 2.61803399248243 | 4.23606795795597 | 6.85410204299925 | 11.0901696088612 | 17.9442733127975 |
103682 | 1.61803398929446 | 2.61803398732419 | 4.23606798496486 | 6.85410193693396 | 11.0901700716654 | 17.9442713741779 |
167761 | 1.61803398854189 | 2.61803398929446 | 4.23606797464839 | 6.8541019774473 | 11.0901698948899 | 17.9442721146647 |
271443 | 1.61803398882935 | 2.61803398854189 | 4.23606797858893 | 6.85410196197258 | 11.0901699624122 | 17.9442718318239 |
439204 | 1.61803398871955 | 2.61803398882935 | 4.23606797708378 | 6.85410196788339 | 11.090169936621 | 17.9442719398595 |
710647 | 1.61803398876149 | 2.61803398871955 | 4.23606797765869 | 6.85410196562566 | 11.0901699464723 | 17.9442718985935 |
1149851 | 1.61803398874547 | 2.61803398876149 | 4.23606797743909 | 6.85410196648804 | 11.0901699427094 | 17.9442719143557 |
1860498 | 1.61803398875159 | 2.61803398874547 | 4.23606797752297 | 6.85410196615864 | 11.0901699441467 | 17.9442719083351 |
3010349 | 1.61803398874925 | 2.61803398875159 | 4.23606797749093 | 6.85410196628446 | 11.0901699435977 | 17.9442719106348 |
4870847 | 1.61803398875014 | 2.61803398874925 | 4.23606797750317 | 6.8541019662364 | 11.0901699438074 | 17.9442719097564 |