An
Exploration of the Fibonacci Sequence
By
Kenneth E.
Montgomery
Fibonacci sequences are sequences of whole numbers generated by Equation 1:
Equation 1: , for all
The Fibonacci Sequence is generated by Equation 1, where. A spreadsheet was used to investigate this sequence and the ratios of its terms (Table 1).
n |
f(n) |
f(n+1)/f(n) |
f(n+2)/f(n) |
f(n+3)/f(n) |
0 |
1 |
|
|
|
1 |
1 |
1 |
|
|
2 |
2 |
2 |
2 |
|
3 |
3 |
1.5 |
3 |
3 |
4 |
5 |
1.666666667 |
2.5 |
5 |
5 |
8 |
1.6 |
2.666666667 |
4 |
6 |
13 |
1.625 |
2.6 |
4.333333333 |
7 |
21 |
1.615384615 |
2.625 |
4.2 |
8 |
34 |
1.619047619 |
2.615384615 |
4.25 |
9 |
55 |
1.617647059 |
2.619047619 |
4.230769231 |
10 |
89 |
1.618181818 |
2.617647059 |
4.238095238 |
11 |
144 |
1.617977528 |
2.618181818 |
4.235294118 |
12 |
233 |
1.618055556 |
2.617977528 |
4.236363636 |
13 |
377 |
1.618025751 |
2.618055556 |
4.235955056 |
14 |
610 |
1.618037135 |
2.618025751 |
4.236111111 |
15 |
987 |
1.618032787 |
2.618037135 |
4.236051502 |
16 |
1597 |
1.618034448 |
2.618032787 |
4.236074271 |
17 |
2584 |
1.618033813 |
2.618034448 |
4.236065574 |
18 |
4181 |
1.618034056 |
2.618033813 |
4.236068896 |
19 |
6765 |
1.618033963 |
2.618034056 |
4.236067627 |
20 |
10946 |
1.618033999 |
2.618033963 |
4.236068111 |
21 |
17711 |
1.618033985 |
2.618033999 |
4.236067926 |
22 |
28657 |
1.61803399 |
2.618033985 |
4.236067997 |
23 |
46368 |
1.618033988 |
2.61803399 |
4.23606797 |
24 |
75025 |
1.618033989 |
2.618033988 |
4.23606798 |
25 |
121393 |
1.618033989 |
2.618033989 |
4.236067976 |
26 |
196418 |
1.618033989 |
2.618033989 |
4.236067978 |
27 |
317811 |
1.618033989 |
2.618033989 |
4.236067977 |
28 |
514229 |
1.618033989 |
2.618033989 |
4.236067978 |
29 |
832040 |
1.618033989 |
2.618033989 |
4.236067977 |
30 |
1346269 |
1.618033989 |
2.618033989 |
4.236067978 |
Table 1: The Fibonacci sequence and ratios of its terms
Open
the XLS file to explore this problem. In Table
1, we have the first thirty Fibonacci terms and the ratios of sequential terms,
every second term and every third term. The values to which these ratios tend
to converge are explored.
Careful
observation leads to the hypothesis that the ratio of sequential Fibonacci
terms approaches the value known as the Golden Ratio and given by:
Experimentation
in the spreadsheet file also leads to the realization that:
Which leads us to hypothesize that the ratio of every second
term approaches the value:
Again,
experimentation within the spreadsheet leads to another realization that:
Thus,
we have the ratio of every third term approaching this value, which should be
given by:
Setting
and , we have the Lucas Sequence (Table 2).
n |
f(n) |
f(n+1)/f(n) |
f(n+2)/f(n) |
f(n+3)/f(n) |
0 |
1 |
|
|
|
1 |
3 |
3 |
|
|
2 |
4 |
1.333333 |
4 |
|
3 |
7 |
1.75 |
2.333333 |
7 |
4 |
11 |
1.571429 |
2.75 |
3.666667 |
5 |
18 |
1.636364 |
2.571429 |
4.5 |
6 |
29 |
1.611111 |
2.636364 |
4.142857 |
7 |
47 |
1.62069 |
2.611111 |
4.272727 |
8 |
76 |
1.617021 |
2.62069 |
4.222222 |
9 |
123 |
1.618421 |
2.617021 |
4.241379 |
10 |
199 |
1.617886 |
2.618421 |
4.234043 |
11 |
322 |
1.61809 |
2.617886 |
4.236842 |
12 |
521 |
1.618012 |
2.61809 |
4.235772 |
13 |
843 |
1.618042 |
2.618012 |
4.236181 |
14 |
1364 |
1.618031 |
2.618042 |
4.236025 |
15 |
2207 |
1.618035 |
2.618031 |
4.236084 |
16 |
3571 |
1.618034 |
2.618035 |
4.236062 |
17 |
5778 |
1.618034 |
2.618034 |
4.23607 |
18 |
9349 |
1.618034 |
2.618034 |
4.236067 |
19 |
15127 |
1.618034 |
2.618034 |
4.236068 |
20 |
24476 |
1.618034 |
2.618034 |
4.236068 |
21 |
39603 |
1.618034 |
2.618034 |
4.236068 |
22 |
64079 |
1.618034 |
2.618034 |
4.236068 |
23 |
103682 |
1.618034 |
2.618034 |
4.236068 |
24 |
167761 |
1.618034 |
2.618034 |
4.236068 |
25 |
271443 |
1.618034 |
2.618034 |
4.236068 |
26 |
439204 |
1.618034 |
2.618034 |
4.236068 |
27 |
710647 |
1.618034 |
2.618034 |
4.236068 |
28 |
1149851 |
1.618034 |
2.618034 |
4.236068 |
29 |
1860498 |
1.618034 |
2.618034 |
4.236068 |
30 |
3010349 |
1.618034 |
2.618034 |
4.236068 |
Table
2: The Lucas sequence
and ratios of its terms
The Lucas sequence can be explored by clicking
on the Lucas tab in the Excel spreadsheet. Although the initial values are
different, we see that the ratios tend to converge to the same values as those
of the Fibonacci Sequence.
Theorem: The ratios of successive terms in a
Fibonacci sequence converge to the Golden Ratio. The ratios of pairs of second
terms converge to the valueand the ratios of pairs of third terms converge to the value.
Proof:
Part 1. Proof that the ratio of sequential terms converges to.
Assume
If , then .
Thus, , so
Rearranging,
we have:
Solving
for L with the quadratic formula, we have:
If , then L<0, which is not
possible, so we discard this root.
Thus,
.
Part
2: Proof that the ratios of second terms converge to .
and since, from part 1:
Part
3: Proof that the ratios of third terms converge to.
Since
(from part 2) and since (from part 1), we have:
Thus,
Return
to Homepage