The
curve above is called a
four-leaved
rose. In this example the number of leaves is twice the value of
k. Note that as
b increases the size of the "roses"
increases. This can also be seen in the table below.
Table 1
θ |
r |
b = 1 |
b = 2 |
b = 3 |
b = 4 |
0 |
1.0000 |
1.0000 |
2.0000 |
3.0000 |
4.0000 |
π/8 |
0.7071 |
0.7071 |
1.4142 |
2.1213 |
2.8284 |
π/4 |
0.0000 |
0.0000 |
0.0000 |
0.0000 |
0.0000 |
3π/8 |
-0.7071 |
-0.7071 |
-1.4142 |
-2.1213 |
-2.8284 |
π/2 |
-1.0000 |
-1.0000 |
-2.0000 |
-3.0000 |
-4.0000 |
5π/8 |
-0.7071 |
-0.7071 |
-1.4142 |
-2.1213 |
-2.8284 |
3π/4 |
0.0000 |
0.0000 |
0.0000 |
0.0000 |
0.0000 |
7π/8 |
0.7071 |
0.7071 |
1.4142 |
2.1213 |
2.8284 |
π |
1.0000 |
1.0000 |
2.0000 |
3.0000 |
4.0000 |
9π/8 |
0.7071 |
0.7071 |
1.4142 |
2.1213 |
2.8284 |
5π/4 |
0.0000 |
0.0000 |
0.0000 |
0.0000 |
0.0000 |
11π/8 |
-0.7071 |
-0.7071 |
-1.4142 |
-2.1213 |
-2.8284 |
3π/2 |
-1.0000 |
-1.0000 |
-2.0000 |
-3.0000 |
-4.0000 |
13π/8 |
-0.7071 |
-0.7071 |
-1.4142 |
-2.1213 |
-2.8284 |
7π/4 |
0.0000 |
0.0000 |
0.0000 |
0.0000 |
0.0000 |
15π/8 |
0.7071 |
0.7071 |
1.4142 |
2.1213 |
2.8284 |
2π |
1.0000 |
1.0000 |
2.0000 |
3.0000 |
4.0000 |
If you look at the row for
θ = π,
as
b increases across the
row,
the value for
r increases.
You
will also notice some negative values for
r. See Figure 3 below.
Figure 3
In the figure above P'
represents a point with angle θ and a negative r.