www.john-weber.com
Using the P–value
- One–tailed test ( Ha: d > d0 OR
Ha: d < d0, where d is the parameter of interest):
- if P–value ≤ α, then reject H0 at the α significance level
- if P–value > α, then fail to reject H0 at the α significance level
- Two–tailed test ( Ha: d ≠ d0, where d is the parameter of interest):
- if P–value ≤ α/2, then reject H0 at the α significance level
- if P–value > α/2, then fail to reject H0 at the α significance level
Using C–Level Confidence Intervals
- One–tailed test ( Ha: d > d0 OR
Ha: d < d0, where d is the parameter of interest):
- cannot use confidence intervals...
- Two–tailed test ( Ha: d ≠ d0, where d is the parameter of interest):
- if d is NOT contained in the CI, then reject H0 at C confidence level
- if d is contained in the CI, then fail to reject H0 at C confidence level
Using the Test Statistic
Finding the Critical Value
First, find the critical value for a given α significance level. For example, to find the critical value,
Zc, for the z–test on the TI83:
- One–tailed test using α significance level:
- for Ha: d < d0, use invNorm(α, μ, σ)
- for Ha: d > d0, use invNorm(1 – α, μ, σ)
- Two–tailed test using α significance level:
- use invNorm(α/2, μ, σ)
Making the Conclusion
- One–tailed test using α significance level:
- for Ha: d < d0, if Z–statistic ≤ Zc, then reject H0
- for Ha: d > d0, if Z–statistic ≥ Zc, then reject H0
- otherwise, fail to reject H0
- Two–tailed test using α significance level:
- if | Z–statistic | ≥ Zc, then reject H0
- if | Z–statistic | < Zc, then fail to reject H0
Back to John Weber's MATH xxxx Page
Back to john-weber.com