www.john-weber.com

Using the P–value

  1. One–tailed test ( Ha: d > d0 OR Ha: d < d0, where d is the parameter of interest):
    1. if P–value ≤ α, then reject H0 at the α significance level
    2. if P–value > α, then fail to reject H0 at the α significance level

  2. Two–tailed test ( Ha: dd0, where d is the parameter of interest):
    1. if P–value ≤ α/2, then reject H0 at the α significance level
    2. if P–value > α/2, then fail to reject H0 at the α significance level

Using C–Level Confidence Intervals

  1. One–tailed test ( Ha: d > d0 OR Ha: d < d0, where d is the parameter of interest):
    1. cannot use confidence intervals...

  2. Two–tailed test ( Ha: dd0, where d is the parameter of interest):
    1. if d is NOT contained in the CI, then reject H0 at C confidence level
    2. if d is contained in the CI, then fail to reject H0 at C confidence level

Using the Test Statistic

Finding the Critical Value

First, find the critical value for a given α significance level. For example, to find the critical value, Zc, for the z–test on the TI83:

  1. One–tailed test using α significance level:
    1. for Ha: d < d0, use invNorm(α, μ, σ)
    2. for Ha: d > d0, use invNorm(1 – α, μ, σ)

  2. Two–tailed test using α significance level:
    1. use invNorm(α/2, μ, σ)

Making the Conclusion

  1. One–tailed test using α significance level:
    1. for Ha: d < d0, if Z–statistic ≤ Zc, then reject H0
    2. for Ha: d > d0, if Z–statistic ≥ Zc, then reject H0
    3. otherwise, fail to reject H0

  2. Two–tailed test using α significance level:
    1. if | Z–statistic | ≥ Zc, then reject H0
    2. if | Z–statistic | < Zc, then fail to reject H0


Back to John Weber's MATH xxxx Page
Back to john-weber.com