Investigating a Fibonnaci Sequence

by

Kimberly Burrell


First, we must generate a Fibonnaci Sequence using f(0) = 1, f(1) = 1, and f(n) = f(n-1) + f(n-2).

1
1
2
3
5
8
13
21
34
55
89
144
233
377
610
987
1597
2584
4181
6765
10946
17711
28657
46368
75025

We now construct the ratio of each pair of adjacent terms in the Fibonnaci Sequence. This ratio is shown in the second column.

1 1
1 2
2 1.5
3 1.66666666666667
5 1.6
8 1.625
13 1.61538461538462
21 1.61904761904762
34 1.61764705882353
55 1.61818181818182
89 1.69797752808989
144 1.61805555555556
233 1.61802575107296
377 1.61803713527851
610 1.61803278688525
987 1.61803444782168
1597 1.61803381340013
2584 1.61803045572755
4181 1.61803396316671
6765 1.6180339985218
10946 1.61803398501736
17711 1.6180339901756
28657 1.61803398820532
46368 1.6180339889579
75025 1.61803398867044

One can observe that as n increases the ratio of adjacent terms is approaching the Golden Ratio, which is 1.6180339887. To prove this finding, click here.


Now, let's investigate the ratio of every second term of the Fibonnaci Sequence.

1 2
1 3
2 2.5
3 2.66666666666667
5 2.6
8 2.65
13 2.61538461538462
21 2.61904761904762
34 2.61764705882353
55 2.61818181818182
89 2.61797752808989
144 2.61805555555556
233 2.61802575107296
377 2.61803713527851
610 2.61803278688525
987 2.61803444782168
1597 2.61803405572755
2584 2.61803396316671
4181 2.6180339985218
6765 2.61803398501736
10946 2.6180339901756
17711 2.61803398820533

Here one can observe that the ratio approaches 2.618033988 or the Golden Ratio + 1.


Let's repeat this process once more to find the ratio of every third term in the Fibonnaci Sequence.

1 3
1 5
2 4
3 4.33333333333333
5 4.2
8 4.25
13 4.23076923076923
21 4.23809523809524
34 4.23529411764706
55 4.23636363636364
89 4.23595505617978
144 4.23611111111111
233 4.23605150214592
377 4.23607427055703
610 4.23606557377049
987 4.23606889564336
1597 4.23606762680025
2584 4.23606811145511
4181 4.23606792633341
6765 4.23606799704361
10946 4.23606797003472
17711 4.23606798035119
28657 4.23606797751065

In this particular case, one can observe that the ratio of every third term of the Fibonnaci Sequence approaches 4.236067977, which is twice the Golden Ratio + 1. To investigate these limits of ratios for different values of f(0) and f(1), click here.


Return